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1. Introduction

There is a remarkable theorem introduced to ocean engineers by Haskind (1957) and New-
man (1960), which relates wave exciting forces to corresponding far-field wave amplitude
of the forced oscillation (radiation) problem. Therefore, once radiation problem is solved,
wave exciting forces can be obtained from the Haskind relation without explicitly solving
for the diffraction potential. The far-field asymptotic behaviors of the first-order diffraction
and radiation potentials are explicitly given by the so-called Kochin Function, H:
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where (1,6, z) is the cylindrical coordinate, k the wave number,v and f,(z) = coshk(z +
h)/ cosh kh with h being the water depth. The diffraction and radiation Kochin functions
Hp,r are defined as
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in which, (%, 9, #) denotes the source point and Sp the mean body surface.

It is well known that the second-order mean drift force can directly be obtained form the
above Kochin function (e.g. Newman, 1967). It is also recently found that the Kochin
function plays a key role in the asymptotic analysis of the second-harmonic potential
at large depths (Newman, 1990). In this paper, we will address these two problems.
Particularly, the existing theory is extended to the case of multi-directional waves in order
to observe the sensitivity of the second-order mean and double-frequency forces to the
change of wave directional spreading.

2. Mean Drift Forces in Multi-directional Waves

Using momentum conservation for the fluid volume surrounded by an infinite-radius ver-
tical cylinder, the mean force on a three-cimensional body can be expressed in terms of
the far-field integral (Newman, 1967), where (1) and (2) can be used. In the presence of
monochromatic bi-directional waves of frequency w, wave headings, By, i, and amplitudes,
Ay, Ay, the far-field integral yields

53




F,(Z) 2 2
(Fn) =22 -eeasaicuen

y k=1 l=1
ko[ - ~ cosé i~ { cos B ~ . cos B
([ Futr+ oo (G2g ) ao+ Stiatn+ 0 (520 ) e+ 1) (281
(3)
where p and g are the fluid density and gravitational acceleration, respectively, H =

H/(—igA/w), and G(kh) = tanh kh + kh/ cosh® kh.

When B, = B = 0, (3) is reduced to the expression given in Newman (1967). If the
input directional wave spectrum is narrow banded in frequency, the above monochromatic
bi-directional drift force results may be used in the so-called “diagonal (or Newman'’s)
approximation” for the efficient computation of slowly-varying drift forces in short-crested
irregular seas (Kim & Yue, 1989).

3. Second-harmonic Diffraction Potential at Large Depths

In this section, we consider an asymptotic form of the second-harmonic diffraction potential
at large depths in the presence of dual waves of frequency w and wave headings S and
B (ie. ¢V = ¢g) + ¢§1)). The analysis basically follows the procedure used in Newman
(1990) where the asymptotic behavior of the second-harmonic potential is obtained for the
regular wave (f = 0), but the theory is now extended to multi-directional waves. Here,
only the final results are presented as follows: '
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where K = w?/g, and thé function F is related to the Kochin function H as follows:
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In case of monochromatic mono-directional wave (8, = fB; = 0), we recover the equation
(19) of Newman (1990). From (4), we see that the leading term of ¢(?) decays algebraically
with depths, as O(1/z), in contrast to the exponential decay of #W). It is also seen that
the amplitude of ¢(?) at large depths is determined by the the Kochin function H.

4. Application to Arrays of Deep Vertical Cylinders

The diffraction and radiation Kochin functions can be obtained analytically for arrays of
bottom-mounted vertical circular cylinders. The diffraction potential due to N cylinders
can be written in the form of Fourier-Hankel series (Linton & Evans, 1990):
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where H, is the first-kind Hankel function of order n, ZJ = f’i:’%iﬁf with a; being the

J

radius of the j-th cylinder, and (rj,#6;) is the local polar coordinate system of the j-th

cylinder. The unknown coefficients A, in (6) can be determined from the body boundary
condition on each cylinder.

The total radiation potential ¢r can be written in terms of the normalized radiation
potentials ¢; for modes i=1~6; ¢p = E?=1 —wwé;p;, where §; designates the amplitudes
of six-degree-of-freedom body motions, and ¢; is given by a sum of propagating and local
waves:
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where K is the second-kind modified Bessel function and the depth function for local waves
fi(z) = cos ki(z+h)/ cos k1h. The unknowns B} and L}, can be determined from the body
boundary condition of each cylinder.

From the far-field asymptotic behaviors of (6) and (7), we finally obtain the Kochin func-
tions of the N columns in the following explicit forms:
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where (R;, ©;) is the location of the center of each cylinder. These analytic Kochin func-
tions can be used in (3) and (4) to calculate the second-order mean and double-frequency
forces on multiple columns.

For illustration, we first consider the surge drift force in monochromatic bi-directional
waves, which is given by (3) in terms of the Kochin functions. The result for the four
columns of the stationary ISSC TLP is presented in Figure 1 for four different combinations
of incident wave angles, where the incident angle of one wave is fixed at 0° and that of
the other wave is increased from 0° to 45° with 15° increment. It is noted that the
magnitude of the second-order surge mean drift force gradually decreases with increasing
the directional spreading in low frequency region but shows somewhat complicated pattern
at high frequencies. '

We next investigate the effect of wave directional spreading on second-harmonic vertical
forces. For this, we compute the double-frequency vertical forces on the stationary :our
legs of the ISSC TLP for four different combinations of dual waves as in Figure 1. It is
seen that the second-harmonic vertical forces on the four columns are very sensitive to
the wave directions and do not simply tend to decrease as directional spreading increases,
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which implies that the assumption of wave uni-directionality does not necessarily lead to
a conservative result.
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