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Introduction
The existence of trapped modes above a long submerged horizontal cylinder of sufficiently
small radius, in deep water, was proved by Ursell (1951) over forty years ago. However it was
not until recently that evidence emerged for the existence of trapped modes in the vicinity
of a vertical cylinder extending throughout the water depth and mid-way between the walls
of a channel of infinite extent. Thus Evans and Linton (1991) provided numerical evidence
for the existence of such modes, antisymmetric about the mid-plane of the channel, for the
case of a rectangular cylinder having two opposite faces parallel to the channel walls. Again
Callan, Linton and Evans (1991), using methods similar to Ursell (1951) proved that an
antisy mmetric trapped mode existed for a sufficiently small cylinder of circular cross-section
whilst Evans (1992) proved their existence for sufficiently long thin vertical plates positioned
parallel to and mid-way between the walls of the channel. Finally Linton and Evans (1992)
used an appropriate Green’s function to construct a homogeneous integral equation for the
trapped modes in the case of a cylinder of fairly general cross-section and showed that the -
trapped mode frequencies agreed numerically with the previous results for the cylinder and
rectangular cross-sections.

In this paper we consider the general question of the existence of antisymmetric trapped
modes in the vicinity of a vertical cylinder of fairly arbitrary cross-section extending through-
out the water depth and placed mid-way between channel walls of infinite extent.

Formulation

We choose Cartesian coordinates and eliminate the depth variation by the factor cosh k(z+h)
where h is the channel depth and w? = gktanhkh. Then the channel is described by
G = {(z,y) : |ly| < d} with the walls represented by the parallel lines I'y = {y = *d}.
The cylinder cross-section F' has boundary & = ®, U ®_ assumed to be piecewise smooth
and parametrized by ®; = {(z,y) : z = X(s),y = £Y(s),0 < s < L, X2 +Y? =1,0 <
Y(s) <d,Y(0) = Y(L) = 0,X(0) = —a, X(L) = a}. The only restriction on the shape of
the cylinder is X! > 0. We denote by 2a = X (L) — X(0) the diameter of the cylinder, and
by S(X) the inverse function to X(s) so that £ = X(S(z)) where S(z) is unique; where
X'(s) = 0 we define S(z) = min{s : £ = X(s)}. Finally we assume for simplicity that
Y (s) # 0. Thus the case of the thin plate requires a modification to the proof.
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In considering trapped modes we shall seek solutions ¢(z,y) which are antisymmetric
about the axis y = 0 and satisfy ¢(z,y) = —¢(z, —y). Then we need only consider 0 < y < d
and ¢(z,y) satisfies

(V24K = 0 for (z,9) € Vs = G4\Fy (1)
a .
-é% = 0 for(z,y) €T, (2)
0
2= 0 fr(eyed, (3
¢ = 0 for(z,y) € Do ' (4)
¢$ — 0 forlz|— 00,0<y<d. (5)

Here G4 = {(z,y) : 0 < y < d}, Fy is one half of the cylinder F, V, is the region occupied
by the fluid and ® = {(z,y) : y = 0,z € (—00,a] U [a,00)}.

We seek solutions of (1)—(5) which are infinitely differentiable at all points of V, and
up to the smooth parts of the boundary, and continuous at all the ‘corners’ of ®,. Such
a solution is a trapped mode and k? is then an eigenvalue which belongs to the discrete
spectrum of the problem defined above, which we denote by (P). If there exist non-trivial
solutions to (1)-(4) which do not vanish as |z] — co we say the corresponding value of k2
belongs to the continuous spectrum. The following result is well-known:

Lemma 1 The continuous spectrum of (P) is the semi-interval [72/4d?, 00).

Physically Lemma 1 means that for any positive k > 7/2d there exists a mode of vibration
radiating to z = +oo, but no such modes exist for k¥ < 7/2d. We shall prove that there is
at least one value of k < 7/2d satisfying (P).

We first introduce the space C* of functions ¥(z,y) which are infinitely differentiable at
all points of V. and on to the boundary. By C° we denote the subspace of C* consisting
of functions ¥ (z,y) satisfying the following two properties:

%(z,0) = 0 for (z,y) € %o (6)
Y¥(z,y) = 0 for sufficiently large |z|. (7

Then we have the following fundamental variational principle for (P). (For a general formu-
lation, see, for instance, Birman and Solomjak (1986)).

k2 = inf //VJrlgrad;M2 dzdy ///V+|¢|2 dzdy

where the infimum is sought amongst functions in CP. Ifk? < 7%/4d? then k3 is the smallest
eigenvalue of (P).

Let us choose a smooth cut-off function x(z) with the properties

Lemma 2 Let

x(z) =1, lzf <1
0<x(z)<l, 1<]z]<?2
x(z) =0, l.’L‘IZQ
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and define the function ¥(z,y) = sin(ry/2d)x(z/A) where A > 0. Clearly ¥ € C¢. We can
now prove

Lemma 3 For sufficiently large A,
2
. 2 ™ / 9
[/ ,,leradyl? dady < 7 i ,, [P dady

The proof is elementary but laborious, so is omitted here. Lemmas 2 and 3 immediately
imply k§ < 7?/4d?, and it is easily shown that k2 # 0 from which we conclude:

Theorem. There exists a trapped mode ko € (0,7/2d) of (P).

References

[1] BIRMAN, M.S. & SoLOMIAK, M. (1987) Spectral Theory of Self-Adjoint Operators in
Hilbert Space. Reidel Publishing Company.

[2] CaLLaN, M., LiNnTON, C.M. & EvaNs D.V. (1991) Trapped modes in two-
dimensional waveguides. J. Fluid Mech. 229, 51-64.

(3] EvaNs, D.V. & LiNnToN C.M. (1991) Trapped modes in open channels. J. Fluid Mech.
225, 153-175. '

[4] Evans, D.V. (1992) Trapped acoustic modes. IMA J. Appl. Math. 49, 45-60.

[5] LINTON, C.M. & EvANs, D.V. (1992) Integral equations for a class of problems
concerning obstacles in waveguides. J. Fluid Mech. 245, 349-365.

[6] URSELL, F. (1951) Trapping modes in the theory of surface waves. Proc. Camb. Phil.
Soc. 47, 346-358.

31




