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1. Introduction

For wave radiation (or diffraction) problems where the fluid domain extends to infinity in the
horizontal direction, a radiation condition at infinity is required to make the problem well-posed.
This condition states that the radiation waves or diffraction waves are outgoing waves only, and is
known as Sommerfeld radiation condition. For computational reasons, it is necessary to reduce the
computational domain to a minimum and the fluid domain will be truncated at some distance by
artificial boundaries (open boundaries). To make the problem well-posed, some kind of boundary
condition or treatment is required at the truncation boundaries. For free surface wave problems, this
means that free surface waves approaching an open boundary should be fully transmitted or absorbed
so that no wave reflection occur. '

Several methods have been proposed to absorb free surface waves and are briefly reviewed in the
following. '

e Periodic Boundary Condition The solution is assumed to be periodic in space so that the
values of the unknowns on one vertical boundary can be set equal to those on the other vertical
boundary of the computational domain. This technique is very easy to implement and open
boundaries can be chosen at a very short distance equal to the largest modeled wavelength.
However, its application is very limited due to the requirement of periodicity.

® Matching to a Simplified Outer Solution In this technique, a simplified outer solution which
satisfies the far-field radiation condition and may be obtained in analytical form is used to match
the inner numerical solution at the open boundary. The problems with this technique include
more difficult implementation, high computational overhead (e.g., linear time-domain solution
with convolution integrals), and poor simulation of the behavior of the outer part of the fluid at
the open boundary (e.g. matching the nonlinear inner solution to a linear outer solution if the
nonlinearity is still quite strong).

* Radiation Conditions Several types of radiation conditions have been proposed for open bound-
aries. The condition most widely used is the Sommerfeld condition first used by Orlanski on
the open boundaries in a finite difference scheme for hyperbolic fiow. For free surface problems
with the Laplace equation as the governing equation, a first-order or a second-order boundary
condition can be obtained using a linearized free surface boundary condition, where the first-
order condition is the same as the Sommerfeld condition. Usually, these radiation conditions are
only valid at a single frequency. Furthermore, successful use of a radiation condition requires an
accurate estimate of the local phase velocity which can be difficult to obtain for fully nonlinear
waves.

o Absorbing Beach (Artificial Damping) This technique uses an artificial damping (dissipation)
in the form of a sponge layer or damping zone so that outgoing waves are damped near the
open boundaries with as little wave reflection as possible. Two methods of implementation are
possible: the first is to add an artificial damping term to the field equation. The second is to
add a “damping” term to the free surface boundary condition near the open boundaries. For
instance, for free surface wave problems in potential flows, a “damping” term is added to the free
surface dynamic boundary condition (Betts and Mohamad 1982), or to both the dynamic and
kinematic boundary conditions (Baker et al 1981; Cointe et al 1990). The technique is easy to
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implement and has good reflection properties for a wide range of fx:equencies. Although a fairly
large damping zone is needed and the amount of damping needs to be tuned, the technique has

become more popular for simulations of nonlinear waves because of its ability to handle a wide
frequency range.

2. Energy Absorption by Beaches '

The principle of the absorbing beach is to dissipate the wave energy before the waves reach the
open boundary. For the case where a damping term is added to the field equation, it is clear that
the wave energy lose occurs in the damping zone through internal artificial friction within the fluid
domain. For example, Chan (1975) solves the momentum equation with a linear artificial damping
term vv o7

ot

where v is zero outside the damping zone. The wave energy is absorbed at a rate (assuming v > 0)

dE; _ - -
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For free surface waves using a potential flow model and a “damping” term added to the free surface
boundary conditions, the mechanism of wave energy lose is different. Since no internal friction can
occur within the ideal fluid, the energy can only be transmitted or absorbed through the free surface
(assuming a rigid wall for the truncation boundary). Consider the free surface dynamic boundary
condition (the Bernoulli’s equation) with an additional term P

+(@-V)T+Vp+k4+v5=0 (1)
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where P vanishes outside the absorbing zone. Since a pressure acting on the free surface can take any
form while the flow remains irrotational, it seems more appropriate to consider the additional term P
as an additional pressure acting on the free surface. Then the energy transmission can be explained
by the negative work done by the pressure P to the fluid via the free surface. The rate of energy

absorption is, iE
v dE; _
= / /S  Pénds. )

where ¢, denotes the normal derivative of the potential ¢ on the free surface.
When P = vé, the “damping” used by Baker et al (1981), Betts and Mohamad (1982),and Cointe
et al (1990) is recovered. In this case, the energy absorption rate becomes,

fd-%f- = //S““h vody, ds. (5)

The term %’- in Eq. (5) may become negative which means that the beach may not always absorb
energy from the fluid but may put energy into the fluid causing undesirable wave refiection. Improved
beaches may be obtained by choosing P such that %L is always positive and thus the beach absorbs
wave energy at all times. Such a functional form is

P = v sign(¢n) 1Q|; (6)
where Q can be any function including nonlinear functions of ¢ and/or ¢,. Equation (4) then becomes
dE; / /
- = ds. 7
L= [/ viQliglds (7)
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3. Preliminary Numerical Results

Various types of beaches have been examined in a 2-D wave tank. Figures 2 to 6 show the results
for P = v¢ and P = v¢, types of beaches. The fluid in the tank is bounded by two rigid walls, a flat
bottom and the free surface (shown in Fig. 1). The problem is made dimensionless based on the calm
water depth, the gravitational acceleration and the water density. The length of the tank L consists
of the domain of interest (ten unit lengths) and the beach (one unit length). The waves are generated
by a pneumatic wavemaker P,, at one end of the tank,

P ={ Po[1+003(%)] sin(wt) (1< t,)
" 0 t> t,).

An absorbing beach is placed at the other end of the tank. The variable v is chosen such that
v =, ({-—_‘_—;’f)z within the beach area and v = 0 elsewhere. The mixed Eulerian-Lagrangian time-
stepping procedure combined with a desingularized boundary integral technique is used to simulate
the fully nonlinear waves.

We let the pressure P, act on the free surface for one cycle (t, = 21) to generate a wave train
which travels towards the beach. The total energy E within the fluid will increase from zero to a
certain value and remain unchanged after the forcing Py, is turned off (t > t,) and before the wave
train reaches the beach. After the waves reach the beach, the total energy is expected to decrease as
is shown in Fig. 2 for P = v¢ and v, = 1. Also shown in the figure are the kinetic energy Ej and
the potential energy E, of the waves. Fig. 3 shows the total energy within the fluid and the energy
absorbed, Ey, by the pressure P. The sum of the energy in the fluid and the energy absorbed by
the beach which should be equal to thé energy provided by the wavemaker P,, is also plotted in the
figure. Fig. 4 and Fig. 5 show the results similar to those in Fig. 2 and Fig. 3 for the P = v¢,, type
of beach with v, = 1. As seen in Fig. 4 or Fig. 5, for P = v¢,, the total energy in the fluid decreases
monotonically after Py, is off (¢ > t,). This implies that the beach always absorbs energy. In the case
of P = v¢, the total energy decays but not monotonically. This becomes more obvious when v, = 10
as shown in Fig. 6, where the total energy can exceed the energy provided by P,,. In this case at
certain times the beach has provided energy into the fluid which is undesirable.

The performance of a beach is influenced by the shape of v, the value of v,, as well as length
of the beach. In order to accurately assess the performance of a beach, a means of determining the
wave reflection is needed. For linear waves, one can use the wave reflection coefficient defined as
Cr= -ff, where A, is the amplitude of the reflected wave and A; the amplitude of the incident wave.
For fully nonlinear waves it is difficult to distinguish the reflected waves from the incident waves and
consequently the reflection coefficient as defined for linear waves can not be used directly. Various tech-
niques to measure wave reflection from the beach have been tried but none have been very satisfactory.
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. Fig. 1 Wave tank with absorbing beach.
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Fig. 2 Energy in the fluid domain.
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Fig. 3 Energies in the fluid domain and absorbed by P
(P =v¢, v, =1.0)
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Fig. 4 Energy in the fluid domain.
(P=vop, v, = 1.0)
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Fig. 5 Energies in the fluid domain and absorbed by P
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Fig. 6 Erergy in the fluid domain.
(P = v¢, v, = 10.0)
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