Force calculations using the linearized radiation potentials at steady forward speed
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A three-dimensional panel method is used to calculate the transient, linearized radiation potentials
for a ship traveling with steady forward speed U. [2] [3] The fluid motion is assumed to be potential,
free of separation and lifting effects. Under these assumptions, the total fluid velocity induced by the
combination of steady translation and small unsteady motions may be expressed as the gradient of the
potential,
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where the coordinate system Z is traveling with the mean position of the body. The first term, &,
- represents the limiting form of the body’s steady disturbance, while the remaining six terms are the
radiation potentials. There is a radiation potential corresponding to an impulsive motion of the ship in
each of its six rigid body modes of motion. [1] When this decomposition is substituted into the exact
initial/boundary value problem, the free-surface and body boundary conditions may be linearized. The
result of this linearization, however, depends upon what part of the steady potential is considered to be
O(1). The simplest assumption to be made about the steady potential is that it is a small perturbation to
the free-stream potential, -
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where both 4 and ¢, are << 1. This assumption leads to the familiar Neumann-Kelvin linearization of
the problem and the following boundary conditions,
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where, ny is the generalized unit normal to the body, aj and &; are the body’s unsteady modal dis-
placements and velocities respectively, and my = (0,0,0,0,U n3, —U n3). There exists a Green function
which solves this linearization of the initial/boundary value problem (with the exception of the body
boundary condition) and it may be written,
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This Green function may be used to derive an integral equation for the radiation potentials and it is upon
the solution to this equation that the results presented here will be based.
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(Subscripts here denote partial differentiation, and the spatial integrals are to be carried out over the mean
position of the body surface, So, and the mean waterline, I'y.) Once the radiation potentials have been
calculated, the force on the body in mode j due to an impulse in mode k (the impulse response function)
may be calculated by integrating the consequent pressure over the body:
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where the correct linearizion of the Bemnoulli equation is in this case,
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In practice, the force is not usually calculated directly from the combination of equations (6) and (7), but
instead an extension of Stokes’ theorem (Tuck’s theorem) is used to write the force as,
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This form is more convenient since it does not involve any spatial derivatives of the potential. This
manipulation, however, is hard to justify since it relies on the O(1) part of the steady potential satisfying
the steady body boundary condition (which the free-stream potential clearly does not do). Even so, it is
interesting to compare the results calculated directly through (6) with those calculated using (8). The most
striking difference between the two is that calculations made using equation (8) preserve the symmetry
between the zero frequency limits of the cross-coupling damping coefficients while calculations made
using equation (6) do not. (This will be exhibited at the workshop.)

Other assumptions about the steady flow can be made as well, for example the steady potential might
be considered as a small perturbation to the double-body potential (that due to the flow around the body
plus its reflection about the z = 0 plane in an infinite fluid.) Such a linearization leads to a different pair
of free-surface and body boundary conditions. [5] It is hard to imagine a Green function which solves
the free-surface condition when linearized about the double-body flow, since it would neccessarily be a
function of the body’s geometry, but this particular linearization of the ship motions problem has been
solved successfully using a Rankine panel method. {4] The body boundary condition obtained from this
linearization is identical to (3) except that the ‘'m-terms’ are now given by,
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where @4 is the double-body potential. Using the double-body 'm-terms’ while satisfying the Kelvin
linearized free-surface condition is hard to justify, (although a bulbous bow might be such a situation)
however, in the spirit of a numerical experiment, results will be presented which have been calculated
using equation (5), and the ’double-body’ m-terms. A fairly elaborate procedure has been developed to
. implement the solution with double-body m-terms. The extra effort is motivated by the desire to avoid
the difficulties associated with calculating sccond gradients of the potential, when this potential has been
calculated from a form of equation (5) whick: been discretized using constant strength, planar panels. The
procedure is as follows: An application of Stokes’ theorem is used to replace the m-terms in equation
(5) with gradients of the double-body potential,
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Equation (5) is then solved to get the radiation potentials. The properly linearized Bernoulli equation in
this case is,
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which means that gradients of the potential are required, along with the potential itself, in order to
calculate the impulse response functions. In order to avoid taking these gradients by some sort of finite
difference scheme, the values of the radiation potentials are now used to solve a first kind integral equation
for the source strengths,
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With the source strengths known, the gradients of the potentials may be calculated by taking the gradient
of equation (12). Finally, with both the potentials and their gradients known, equation (11) may be used
in equation (6) to calculate the impulse response functions. Résults from these calculations will also be
presented and compared to the consistent Neumann-Kelvin results, as well as to results obtained using a
Rankine panel method.
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