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The kinematics of three-dimensional breaking waves is of fundamental importance to the-
oretical understanding and engineering applications. Because of mathematical difficulties
in solving the nonlinear wave equations in three dimensions, three-dimensional overturning
waves are among the least well studied wave phenomena. In particular, weakly nonlinear
theories based on perturbations are of limited use because of the non-single-valued nature
of the overturning wave profile.

In this paper, we present a three-dimensional extension of the numerical study of periodic
two-dimensional overturning waves by Longuet-Higgins & Cokelet (1976) using a mixed-
Eulerian-Lagrangian (MEL) approach. We consider an inviscid, incompressible and irrota-
tional free surface flow on deep water with spatial periodicity in both horizontal z and y
directions. We choose a computation domain of length L and width W. The Cartesian
coordinate system is defined with its origin in the undisturbed water level and the 2z axis
positive upward. For simplicity, all variables are nondimensionalized by setting the density
of water p and acceleration due to gravity g to unity.

The potential ¢ satisfies the Laplace equation V?¢ = 0 with appropriate boundary condi-
tions. On the free surface Sy, Bernoulli’s equation gives the dynamic boundary condition:
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where D/Dt = 8/8t 4+ V¢ -V is the material derivative following a Lagrangian particle, and
ps(Z,t) the (applied) surface pressure. The kinematic boundary condition is

Dz
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This vector equation gives the evolution equation for free-surface Lagrangian particles. For
deep water, the appropriate far-field condition is:

Vé(z) — 0 as z — —00, (3)
for all times.

Assuming, without loss of generality, that ¢ is a constant at infinity, we obtain from Green’s
second identity

/ /s, #nGydS + [ /s _9GndS = —a$ ~ / /S #GyndS (4)
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u w Dn
€ N, 3 €maz e €mazx 3 €max
04 8 | 0.02463 0.05460 | 0.01165 0.02547 | 0.01294 0.04134
16 | 0.00271 0.00914 | 0.00581 0.02914 | 0.00560 0.02453
32 { 0.00027 0.00094 { 0.00126 0.00640 | 0.00090 0.00503
64 | 0.00010 0.00045 { 0.00055 0.00238 | 0.00046 0.00197

Table 1: Error convergence of QBEM for an exact Stokes wave profile with L = 2r (W =
L/4). Curvature based grids are used. H, is the number of unknowns per wavelength. u
and w designate the velocity components in = and z. & and e,,,, denote the arithmetically
averaged and maximum errors in the computed quantities, respectively.

where £ € Sy and a is the solid angle at Z, and the finite part of an integral is assumed if
the kernel is singular. In the above, G, is the doubly-periodic (in z and y) harmonic Green
function with the following far field behaviour

()

where C is a finite constant. Clearly, G, does not satisfy the far-field condition (3). Since
Gnp is a constant at S, the far-field integral in (4) evaluates to a constant, 7, say. A
compatibility (Gauss) condition

Gp =Clz| + o(1)

[ #n(3t)ds =0 (6)

gives the additional equation for 7.

After extensive testing and comparisons with other boundary-integral approaches, we select
and extend a high-order boundary-integral equation method based on bi-quadratic isopara-
metric curvilinear elements (QBEM). The regular part of G, is evaluated effectively using
expansions given by Newman (1991). The singular integrals over a curvilinear domain are
regularized by triangular polar-coordinate transformations in the parametric space. An ef-
ficient adaptive quadrature scheme is developed for the elemental integrals. For far-field
collocation points, efficient series expansions are adopted in favor of numerical quadrature.
The resulting linear system of equations is solved using the GMRES iterative scheme (Saad
& Schultz 1986) with a SSOR preconditioner. Our numerical experiments confirm that for
Kellogg-regular boundaries, both the maximum and average error of QBEM exhibit quadratic
convergence with the number of unknowns. Table 1 shows the typical convergence of these
errors for a test case using exact Stokes waves.

To advance Lagrangian points in the present MEL context, the accuracy of the solved velocity
field is crucial. For the computation of the (tangential) velocity components on the nonlinear
free surface in three dimensions, a parametric finite-difference scheme (Xi 1992) is devised,
which is superior in efficiency and accuracy to the use of bi-cubic spline fitting. For the
time integration of the nonlinear free-surface conditions, a fourth-order Adams-Bashforth-
Moulton difference formula is used with a fourth-order Runge-Kutta scheme as a starting
procedure. The time step size is dynamically controlled by stability criteria based on particle
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velocity and panel dimensions (Dommermuth, Yue et al 1988). To suppress the growth of
saw-tooth instabilities, a five-point Chebyshev smoothing formula is applied in alternating
directions in the parametric space after a fixed integral number of time steps.

Systematic accuracy and convergence tests are performed first using exact finite-amplitude
Stokes waves, and in repeating the two-dimensional overturning wave simulations using an

applied pressure of Longuet-Higgins & Cokelet (1976) and others. The results are in generally
excellent agreement.

To generate a three-dimensional overturning wave, we start with a progressive two-dimensional
Stokes wave but now apply a three-dimensional surface pressure distribution to raise the en-

ergy density beyond the maximum for a steady Stokes wave. Specifically, we choose the
following form for the surface forcing:

| po(l + cos(2wy/W)]sintsin(z — ct) for0<t<m, 7
PP=%0 fort >, (7)

with po = 0.073, and the wavelength of the Stokes wave is L=2x. To quantify the degree
of three-dimensionality, three different values of the (periodic) transverse width are chosen
corresponding to W/n=1, 2 and 3. For computational efficiency, only half of the symmetric
domain in y is discretized in the simulations. Figure 1.1 shows the perspective view of the
near-final phases of the overturning wave profiles corresponding to the three different W
values. (Only the symmetric halves corresponding to y € [—W/2,0] are shown. The profile
nearest the observation point is along y = —W/2 and the furtherest profile is the symmetry
line y = 0.) '

Although the maximum of the forcing pressure for all three cases are along the centerline y =
0, the resulting three-dimensional plunging breakers surprisingly develop either at the center
(y ~ 0) or at the edges (y ~ +W/2) depending on the value of W/L. Equally interesting
are the time histories of the kinetic and potential energies, which after normalization by the
width W, differ only by a few percent so that the total energies are approximately linear
functions of W. It is noteworthy, however, that the velocity/acceleration fields and profiles
of these three-dimensional overturning waves are otherwise quite different and qualitatively

so for W > L versus W < L.

More detailed numerical results and discussions of the kinematics of three-dimensional over-
turning waves will be presented at the Workshop.
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DISCUSSION

GREENHOW: What type of ocean engineering application is now open to you as a
result of this 3D approach? By the way, this is really impressive work!

XU & YUE: Our long term goal is the simulation of general non-linear wave-body
problems such as the large-amplitude motions and loads on a ship in steep waves.
This capability is still some time away, and requires, among other developments, a
robust geometry capability involving three-dimensional surfaces and interactions.
More immediate applications include interaction of waves with submerged obstacles,
3D nonlinear developments of wavefields, sloshing in tanks and diffraction by vertical
cylinders/struts.

TUCK: Why is the Lagrangian method still being used? It has always seemed to me
quite unnatural to formulate the problem in an Eulerian manner but to solve it in a
Lagrangian manner. There were some advantages of convenience when Languet-
Higgins and Cokelet began this type of numerical study, but with the advance of
computational skills and hardware power, I should have thought that a fully Eulerian
method would have replaced the Lagrangian method by now. In detail, I have always
been uneasy about the fact that at each step one solves a Dirichlet problem on the free
surface, which bears no relationship to the true physical situation.

XU & YUE: It seems to us that your question touches on 2 aspects:

(1) why update following Lagrangian points rather than in an Eulerian manner? The
use of Lagrange points is neither essential nor critical in integrating the free surface in
time — (a) for non single value free surface F, there is no ‘obvious’ projection with
which to specify Eulerian updating and Lagrangian point update is both natural and
simple; (b) it is known, that Lagrangian points have a tendency to concentrate in
regions of rapid variation, so following Lagrangian points leads to enhanced
numerical resolution. ,

(2) why specify the ‘unnatural’ Dirichlet free-surface boundary condition? This we
believe may be the main point of your question. For free-surface problems, the
physically natural boundary condition to specify on F is in fact the Dirichlet one, i.e., at

(initial) time t, we specify the position F(t) and the pressure (impulse) ¢(t) on F(t) and
seek the subsequent evolution (solve for ¢n(t) and thus Vé(t) on F(t), then use the
kinematic and dynamic conditions to obtain respectively F(t+At) and ¢(t+At) on

F(t+At), and the process is repeated). This ‘natural’ specification unfortunately leads to
mathematically undesirable (‘unnatural’) first kind boundary-integral equations (at

least for the direct formulation in terms of ¢ and ¢, using Green's theorem).The
alternative is to specify ¢n(t) on F(t), which, after solving (2nd king equations) for ¢(t)
and hence V4(t) on F(t), does not allow us a natural way to determine ¢n(t+At)!
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