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In stratified ocean, the internal waves may be important in prediction of the wave loads and
responses of floating bodies. Some efforts had taken tow;ards investigating the stratification effects
upon the wave loads and responses of constrained floating bodies. Wu et al had developed a linear
theory and found that, the first and second order equations of motion for a constrained floating
body are similar to those in uniform ocean[1], the added mass and damping matric both also are
symmetric, there exist two radiation wave systems with wave numblers (k.} (n=1,2,,M)
at far field, where &y, is the free surface wave numbler and others the internal wave numblers[2],
and the effects of stratification should be considered when estimating the low frequency hydrody-
namic characters of a floating body[3]. For a floating vertical circular cylinder in two layer fluids
of different densities, their numerical results[ 4 ] indicated that, if the body is in the upper layer
fluid, the effects of stratification upon the hydrodynamic coefficients become more significant
when the body more near the interface of the two fluids.

Here, We consider the second order wave diffraction problem of a fixed body in stratified
ocean. It is assumed that the seawaters consist of two stationary superposed fluids with different
density p, and p, , where p, is the density of the upper layer water.and p, the density of the lower
layer water, the fluids are imcompressible, and the motion is irrotational. Approximate a random
seaway by the linear surperposition of a sufficiently large number of regular plane progressive
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wave components of different frequencies {w,} and headings {a,} , and denote the linear order
incident and scattering potential by

Be (@n(z)ezp(— iwat)) and Re( @S(z)ezp(— iwnt)),
respectively, one can find the second order scattering potential ®3 has following expression ;

D5 (z,8) = D) Rel Dk (2)ezp(— iQLt) + Oz (2)ezp(— iGzt)) (1)
]

where, Qf = @, 4+ w. . The sum- and difference- frequency pote;lﬁals &L and P are governed by
VioE =0 23 € (— H, —h) U (—4,0) (2)

LEPE = pE(2) onzy =0 (3

PLEDE( 2,22y — h 4+ 0) — pLEDE(2,,22, — h — 0) = UL(z1,2,) €]

HPE( 1,22, — h + o) — HPE( 21,22, — b — 0) = Vﬁ(zuzz) (5

:PE =0 onz; =— H; (6)

aV(PE + @)= 0 onz € Ss (7)

and a proper radiation condition at far field. Where, H , the sea bottom depth, is constant, n the
unit normal vector pointing into the body, Sj the wetted surface of the body, z; axis the vertical
axis, positive upward,_z; = 0 corresponds to_the mean free surface, and z; = — h expresses the
mean interface between the two §uperposed fluids. @£ and @, are the second order sum- and
difference-incident potential, respectively, Lf = g3y — (@, £ @u)?, z = (z1,25,23) , 35 =
3/3z;(j =1,2,3) . The forcing term P%, Q% and VZ can be expressed as

2PE(z) = i( QEVHEV @t — agfLagh*

+ 205 VE Vot — apiLlapht F ougltLgs) (8a)
Ui(zi,2:) = pPE(z1,22, — h + o) — poPE(2y,22, — b — o) (8b)

WE(z1,2:) = Vi( Vg2 *) + VBV iglE) + Vi(5hEV,195) (8¢c)
where ' .
7 = i@l (2,20, — k), # = ] '@l(z,,22, — h)
V1= (31,3), L. = & — vads, ve = i/g
Pt =gn=(gr7) ", ot =@l = (ga") *.
The Linear incident potential @ is given as{ 1]
@b = iora.f( z3) coshk,( z3 + H) coshkaHezp(i( kaZy + kT2 — @t + 6,) )
1 — ol + (v — Dankk(zs + H) 2 € (0, — k)
f(”)={1—v.T+<v.—T)Tz n € (—h, — H)
where T = tanhk . H, T, = tanhk,h, T, = tankk,(H — k) , and the wave number &, , which e-
quals to (k2 4 k%) % , is one of the positive real roots of the dispersion equation as follows

€:))

@ rT(1+ T\T)) + /T (1 + T\T2)? — 4(r — DT\ To(r + TiTs) 10
P 2(r + T\T,)
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with » = p,/p, , and, in connection with the source distribution method, the solution of the linear
scattering potential S had been obtained and can be expressed as[ 3]

# @) = [ 00085, 1= a0 € 5o an

where, o3 is the source density, and the Green function G is the solution of below boundary value
problem

VG (z,q;0) = 6(z — ¢) g2 € (—H, — k) U (—4,0) (12)
LG=10, onz =0 HG =0, onzy=—H (13)
p1LG(zyy22y — b + 0) = p,L,G(z1,22, — h — 0) (14
3G (21,22, — h -+ 0) = 3,G(zy,22, —h — 0) as
Sommerfeld condition at far field (186)

it’s integral expression had derived from [3].

The far field condition of the second order problem also can be derived along the same way
described by Wu et. al[5].

We consider the general case of a surface-piercing body, and, for simplicity, assume that the
body surface penetrates the free surface vertically. Thus, the second order force Fu., on the body
has following expression ;

Fiu = Flins + Fim an

P = { [, 27 (ot + 900, V(5% + gt} ns
+ pxw.a».J.L (ph + ¢8) (g% + @i F) ndL + c. o) (18)

Pio == i (0, £ @) ol + 023045 + 0.0 (20)

where Sj is the wetted body surface below the still water level z3 = 0 , and L1w is.the waterline
curve atzs = 0.

Introducing an adjacent function p£,(z) governed by

VipE. =0 zs€ (—H, — ) U (—5,0 @n
Ly, =0 ' onzs =0 (22)
pr1LEYEL (21 y22y — b+ 0) — ppLEPEL (21,22, —h+0) =0 (23)
33¢$u(31,12, —h+0) — 337"3:-(21’22, —h—o0)=0 (24)
L, =0 on Xy =— H; (25)
aV pE. = n, on X € Sy (26)

and Sommerfeld condition at far field, and, using Green’s theorem, we find that, F%., , the part

. of the second order wave forces which is only in connection with the forcing terms on the boundary
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condition of the mean free surface and the interface of the two fluids, can be rewritten as

J‘ pPEndS
S.

= A J' ¥E(DPE()IS

+ js’( (o £ o) 2392, (2)UE(2) — p‘_p’sz..(zuzz)

P

X [pe(airz, — b+ 0) + pku(aryzs, — h — 0)])ds @n

where S; is the mean interface of the two fluid layer.

The practical calcutation of the second order wave forces is our next task. This work is sup-
ported by the Chinese National Naturel Science Foundation (Grant 18902011)
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DISCUSSION

GREENHOW: This problem may be important for a floating bridge structure proposed
for crossing Norwegian fjords, where strong (fresh/salt) density stratification can
occur. I suggest the author looks at the submerged cylinder problem, near to, and both
above and below, the interfacial layer.

WU: I will investigate this problem.

MILOH: A typical ratio of Ap/p in the ocean is 104 and it hardly exceeds 3 10-2 (lakes or
fjords). For these values it is very unlikely that there will be any effect on the added
mass and damping coefficient as compared to the homogeneous case. The only
pronounced effect of such a stratification is on the wave drag at the vicinity of the
critical densimeter Froude number.

WU: For a floating vertical circular cylinder in two layer fluids of different densities,
our numerical results had indicated that, if the body is in the upper layer water and
very near the interface of the two fluids, the effects of the density difference on the
added and damping coefficients may be remarkable as compared to the homogeneous
case, in spite of the density being small.
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