PERTURBATION RESULTS FOR THE RESONANCES OF THE SEA-KEEPING PROBLEM
J-M. QUENEZ*, C. HAZARD*

Introduction:

We are concerned with the motions of a floating body subjected to an incident wave. We
study the variations of the amplitude of the motion with respect to the frequency of the excitation.’
The frequencies for which this amplitude is maximum are called “resonances of the problem”. Qur
approach is to consider the resonances as the trace of complex singularities for the extension of the
problem to complex frequencies. The singularities are called “scattering frequencies”. A resonance
lies near the real part of a scattering frequency whose imaginary part is small.

We limit our study to the first order linearization of the sea-keeping problem. We consider the
2-dimensional sea-keeping problem with finite depth. C. Hazard [1] has characterized the scattering
values by means of a method developped by M. Lenoir and A. Tounsi [2}. They have stated that
the problem is equivalent to one posed in a bounded domain by introducing an explicit sum at the
boundary. The numerical method based on this idea is called the localized finite element method.
C. Hazard [1] (part.III) has used this method to extend the problem to complex frequencies. He
has computed the scattering frequences of this extended problem which are near the real axis and
not too great (with respect to the absolute value). He has stated that the scattering values are
solution of a nonlinear equation.

A basic difficulty is to find good starting values for the computation of the solution of this
equation. We will introduce a small perturbation in the problem. We state the continuity of the
scattering values with respect to the perturbation. We will continuously obtain the scattering
values which come from the eigenvalues of the sea-keeping problem in a pool. This last problem
is self-adjoint and classical programs for the calculation of eigenvalues of symmetric matrices are
available.

I) The classical sea-keeping problem

Let us consider a rigid body (C) floating on the free surface. (z, 2) are the horizontal and vertical
coordinates. The following notation characterized the system at rest: Q is the fluid domain; I is
the hull of the body (C); FS is the free surface (C {z = 0}); F is the bottom (= {z = -—h});n

.iis-she unit outward normal on 9.

FS - r

o

Q

* We study “the linearized steady-state problem”, i.e., the periodic motion of the body sub jected
to a sinusoidal incident wave of frequency w. We want to determine the scattered potential ® as well
as the motions of the body (C), characterized by the three components of a vector s = (81,32,83)
(2 translations, one rotation).
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The couple (9, s) is solution of the following problem Q,(where v = w?) associated with the
data (g(1),g(?)) which characterized the external forces (they depend on the considered incident
wave).

(1) Ad =0 in Q
(2) On® - vd =0 on FS
- (3) 0h® =0 on F
(4) C0n® + VUSN = gV onT

2 ——

Q. (5) (-vM + K)s + v /P BNdy = ¢

0 2
ad
6 il ; d . g .re
(6) /_ NES F ind e ——~ 0 (radiation condition)
\ vp positive solution of votanh(voh) = v

M is the 3x3 mass matrix of the body. K is the 3‘.x3 hydrostatic stiffness matrix. A is the

generalized outward normal on T ( AV (M)=(g,57\2 An)).
To extend the problem to complex frequencies, we follow C. Hazard’s arguments [1] based on
the formulation of an equivalent problem posed in a bounded domain.

II) The problem posed in a bounded domain.

Let ¥,,%, be two vertical segments strictly enclosing the body (C). We denote by 2, Q; and Q,
the inside, left and right filuid domain. FS, FS;, FS; and F, Fy, F, are respectively the inside, left
and right free surfaces and bottoms. '

A
FS1 ——FS . —FS
i |
! A r N |
2 zlll © 52 %
! A |
Fp—* F L F,

We define for [ = 1,2, the boundary operator C;, which maps a function x defined on %
onto the normal derivative of the outer solution @ of the outer Dirichlet problem:

(1)in (2) on FS; (3) on Fi
(5) ® = x onZX
(6) the radiation condition

Ql,u(X)

The operator C;, is explicitly known (see C. Hazard [1] part. IIT); the method of separation of
variables provides the explicit sum:

Ciulx) = =ivo(¥) ( / x®® dz) @0(z) + Y ¢ ( L x®(™ dz) 8(™(2)
L m=1 t

Cf,"') are the zeros of the dispersion equation: ¢ tanh(¢h) = —v.

@E;o)(z) = af,o)cosh(uo(z + h)) corresponds to a radiative solution of Q,',. Qf,m)(z) are terms which

correspond to evanescent solutions of Q; ,.

We now define the inside problem posed in the bounded domain Q:
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Find (8,3) such that Q, holds,

) (1)in® (2 onFS (3)onF
(4)onT (5)inC
(6) 8, $ = -—C(,y(Q) on¥X;l=1,2
We show that Q, is equivalent to the linearized steady-state problem Q.. The extension of the
problem to complex v can be done through the explicit continuation of the boundary operators
Ciwl=1,2for v € C (except perhaps the v for which the dispersion equation (tanh(C(h) =
has a double root). From the variational formulation of the problem Q, for v € C, it follows tha.t ‘

(0) () + Tolv) + Ti(v))(&,3) = F(v)

where F(v) represents the external forces in () x C? and is the data,
To(v) ( Ty (v )) is the linear operators in A!(£2) x C* associated with the radiative boundary term
(resp. the evanescent boundary ones). §(v) stands for all the other terms.

Problem Q,, is well posed for all v such that fm(v) > 0. The operator Rv) = (S(v) +
To(v) + Ti(v))~! which maps the data F (v) onto the solution of Q, is well defined for v such
that Im(v) > 0. It is analytic and has a meromorphic continuation in {v € C; Im(v) <0 }.
The poles are the v for which the homogeneous equation (0) admits a non zero solution:

(1) (S(v) + To(v) + Ta(v) )(&,3) = 0

In order to calculate them, we solve A(v) = 0 where A(v) is an eigenvalue of ($(v) + To(v) + T2 (v)).
We need an iterative method (fixed point method or Newton’s one). Finding good starting values
for the computation is one difficulty of the problem. In order to find some, we introduce a small
perturbation in the problem Q, so that the scattering values are close to seeked ones.

III) The € perturbated problem

Let us formulate the inside problem Q: by the same equations as Q, except (6)':
Find (<i>‘,§‘) such that Qi hods, -

Qt (1) to (5)
v (6)" 0,9° = EC“,(QIE‘) on L;forl = 1,2 .

. . 2 0
Notice that, fore =1, Q}, = Q, is the sea-keeping problem in open sea and that, for e = 0, Q,

is the sea-keeping problem in a pool.

The equation associated with Q. , by means of the variational formulation is ( S(v) + e(To(v) +
Tl(u)) ) ($¢,5°) = F(v). We define, as for the unperturbed operator, the associated operator

Re(v) = (S(w) + «(To(v) + Ti(v)) )~'which maps the data F(v) onto the solution of Q.
The scattering values of Q ° are the discrete poles of R¢(v)in {z € C/Im(z) <0} They are
the values of v for wich the homogeneous problem associated with Q,, admits a non zero solution:

(2) ($(v) + «To(v) + Ta(v)) }($°,5°) =

IV) Properties of the scattering values

. . - o
Propositionl: Scattering values are continuous with respect to €. If vg is a scattering value of Q,,
: ae L L ; -
then, there is a scattering value v(e) of Q, lying in the vicinity of vo and there tsap € IN® such
that v(e) is analytic with respect to (¢ — £0)? if ¢ lies in the vicinity of €.
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Remarks: The main tool is Steinberg’s perturbation Theorem.4 (see [4]). A numerical method
follows: first, calculate the eigenvalues of the rigid body (C) floating in the pool §; next use these
values as the starting values for the calculation of the scattering values of Q: for small ¢; then

with these new values , we can continue the process and use them to find the scattering values. for
greater £; and so on until we attain £ = 1.

Proposition2: Let vy be a simple root of the problem (2) for €g = 0; then there is a unique pole
v(e) in the vicinity of vy, analytic with respect to € at € = 0. Moreover,

dv < Ty (v0)(®o, 8); (B0,50) >
Re(—(0)) = - -
e(de( ) ~ < 82 () (0,5 )i($0, %) >
Im(%(ﬂ)) S To(vo)(®0,3); (Do, 50) >

~ < E(n)(®o,50)i($0,50) >

Remarks: vg is a simple root of (2) means that for € near 0 and v near vy, there is only a one
dimensional algebraic eigenspace associated with a single eigenvalue of S(v) + (To(v) + Ti(v))
near 0. (®o,3¢) is the unique non zero vector solution of (2) for £ = 0 and v = 5. The proof is
based on the same arguments as M. Vullierme-Ledard [5]. The implicit function theorem gives the
two above equalities. e :

We have followed four scattering values of Q, in the complex plane for € € [0,1]. We have
noticed that the derivatives at £ = 0 are nearly purely imaginar. The above equations give that the
radiative term Ty brings the major perturbation. It may occur that two scattering values intersect.
If the intersection occurs for the same ¢, i.e., v1(¢) = va(€) = v, v is at least of order two. If not,

v1(e1) = v2(e2) = v implies that v is a scattering value for two different problem Qf,' and Q,‘,’
Conclusion

We state also the continuity with respect to the geometry of the hull or a wall that encloses the
body. But the theory of perturbation used by S. Steinberg [4] is not usable when the wall attains
the free surface. Techniques as J. T. Beale’s [3] in the case of resonators in acoustics provide the
same results in hydrodynamics. '
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DISCUSSION

MARTIN: Two questions on your numerical results, showing the movement of the

scattering frequencies as € is varied:
What is the geometry of the floating bodies?

Can you prove that the real frequencies at € = 0 move off the real axis perpendicularly

for small €?

QUENEZ & HAZARD:

Answer to question 1: The body consists of 2 rigid hulls linked by an elastic beam
which is lying above the water: it is a catamaran.

Answer to question 2: The real scattering values at € = 0 don't move off
perpendicularly but nearly perpendicularly. As explained in the notes, this means that
if we consider the eigenfunction associated to one of these V(0), its boundary
components along radiative terms are greater than the components along evanescent
ones.

We can explicitly calculate those eigenfunctions for a pool (without body!) and verify
that. For a general body, I can't see why this occurs.

Remark: In your work with Luke, you obtained similar results. In your case, for

infinite depth (e = 0), the components of eigenfunctions along radiative terms are zero
so the scattering values move nearly along the real axis (and even exponentially as
you prove it.)
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