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The Fourier-Kochin-Galerkin Approach

The Fourier-Kochin approach and the Galerkin solution-procedure using patches and panels presented in [1,2)
and [3], respectively, and summarized in [4) offer several desirable features. An important advantage of the FKG
approach is that the basic mathematical and numerical difficulties associated with the numerical evaluation of the
singularities of the Green function G(Z, E-) and its gradient, and their subsequent panel-integration, are avoided
as a result of two preliminary surface integrations (with respect to the points # and £) ). Furthermore, a Galerkin
solution-procedure utilizing patches, which may be regarded as ‘higher-order’ curved panels, together with flat
triangular panels offers the advantage of decoupling the representation of the variation of the potential (or of
equivalent source or dipole distributions) and the integration over the surface of the body; more precisely, the
variation of the potential is defined by means of a Galerkin representation (employing Chebyshev polynomials)
within patches, and the surface-integrations over the patches are performed by subdividing each patch into a
number (> 100) of flat triangular panels. This approach makes it possible to discretize the body surface into the
very large number (> 10, 000) of panels required for accurary. Another appealing feature of the FKG approach is
its generality: whereas traditional panel methods require considerable preliminary mathematical and numerical
investments for devising reliable and efficient methods to evaluate the Green functions corresponding to specific
boundary conditions, the FKG approach is directly applicable to a wide class of boundary-value problems
governing dispersive waves. Indeed, the FKG approach relies wholly upon the dispersion relation characterizing
the dispersive waves, as is shown in the analysis presented further on. The FKG method, however, involves one
crucial nontrivial task. This task consists in numerically evaluating singular double Fourier integrals. A method
for performing the Fourier integration in the FKG approach is presented in {3]. Significant modifications and
improvements to the method, devised as a result of numerical experimentation, are presented here.

The Generic Fourier Integral

It is shown in [3] and [4] that the FKG approach involves Fourier integrals, R say, of the form

Lo o} T .
R= lim / pdp [ d8N(8,5)/ Du(6,0), (1)
e—~+0 Jo -

where p and @ are the polar Fourier variables corresponding to the Cartesian Fourier variables a = pcos§ and
B = psinf, the numerator N(6,p) is given by the product of two spectrum functions, which are continuous
everywhere and vanish as p — o0, and D, is the dispersion relation involving the artificial exponential time-
growth factor ¢, in the manner shown in {5] and adopted in [1}-[4]. The dispersion relation D.(8,p) can be
shown [5] to be of the general form

D(6,p) ~ D(8,p) —icD'(6,p) ase—0 @) -

with D=[D,]c=0 and D'=[idD./d¢ =0 ; the functions D(8, p) and D’(8, p) are real. The function D represents
the actual dispersion relation, which corresponds to the limit ¢=0 of the complex dispersion relation D, . The
Fourier integral (1) is considerably simpler than the corresponding Fourier integral in the expression for the
Green function G(Z,£), for which the spectrum function N is equal to exp[p (z4)+ip {(z~¢) cos 6-Hy—n) sin 8} ],
because N vanishes in the limit p — co whereas the exponential function in the expression for the Green function
is equal to 1 at the singularity (z=0=¢,z=§,y=n). However, the spectrum function N (8, p) in the Fourier
integral (1) is defined numerically (via an integration over the body surface) and is more complex than the
exponential function in the expression for the Green function; as a result, analytical t;echmques, notably contour
integration, which may be used for evaluating the Green function cannot be applied to evaluate the Fourier
integral (1), which must then necessarily be evaluated numerically.
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The Limit ¢ —» 40 And The Far-Field Waves

The Fourier integral (1) may be expressed in the form
R=R°+¢ETOR“ (3)

where Rg and R, are the integrals defined as
o0 L4 o ~
R0=/ pdp [ dON/D, R,:/ pdp/ dNA, with A, =1/D—1/D.  (4)
0 - 0 -%

The integral R, is now considered. We have A, = (D-D,)/(DD,) = ieD’/[D (D—ieD’)] by virtue of (2). It
may then be seen that A, —0 as e—0 if D#0. The only contribution to the integral R, therefore stems from
the curves in the Fourier plane where we have D=0. The dispersion equation D =0 generally defines one or
several distinct curves in the Fourier plane, which are referred to as dispersion curves hereafter. The dispersion
curves corresponding to the waves generated by a ship advancing in regular waves and to several other dispersive
waves are depicted in [1]-[3] and [5], respectively. The Fourier integral R, thus may be expressed in the form

) 5
R, _Z-;o/lkoN(S) I(s)J(s)ds with I(s)= [.oA‘(D’s)dD’ (5)

where ) ,_, means summation over the various dispersion curves D =0, s is the arc length along the cor-
responding dispersion curve, N(s) represents the value of the spectrum function N(D,s) along the dispersion
curve, § is an arbitrary small real positive number, and J(s) is the value at the dispersion curve of the Jacobian
J(D, s) associated with the coordinate transformation (p,8)— (D, s). The Jacobian J is defined by the relation
pdpdd=JdDds=J(8D/8n)dnds, where n represents the distance along the normal to the dispersion curve
D=0. We also have pdpdf=dnds. It follows that the Jacobian J is given by J =1/(8D/3n). The vector
VD is normal to the dispersion curve D=0, and we thus have 8D/8n = VDe 7t = VDeVD/||VD| = ||VD||.
This yields

J =1/|IVD|| = 1//(8D/0a)*+(8D/98)* = 1/\/(8D/8p)*+(8D/36)*/ p* . (6)

The integral I.(s) in (5) is now considered. We have A, = ieD’/[D (D —ieD’)] as was already noted. We
then have A, = ieD’(14ieD’/D)/[D*+€*(D’)?]. By substituting this expression for A, into (5), performing the
change of variable D = e\ (with ¢>0), and taking the limit ¢ — 0 we may obtain

0

Jim 1,(s) = iDf / A (LD [ WDV,

The imaginary part of the integrand is an odd function and the corresponding integral thus is null. The integral
can then be shown to be equal to iwsignD’. By using this result in (5) we may finally obtain

. — . 7
ell.To R, =ir DZ.:O /D=OszgnD (s)N(s)J(s)ds. (7)

The Fourier integral R defined by (1) thus is expressed in (3) as the sum of the double integral Ry defined
by (4), which corresponds to the limit ¢=0, and the single integral along the dispersion curves defined by (7).
The latter integral can be shown to represent the system of far-field waves, while the integral Ry corresponds to
a nonoscillatory near-field flow disturbance. The integrand of the double integral Ry defined by (4) is singular
along the dispersion curves D=0, as was already noted. This singular double integral is now considered.

Analytical Integration Of The Singularity

Let us consider an even function E(A) that is equal to 1 for A = 0, nearly equal to 1 for small values of
A, and negligibly small outside the range —1 < A < 1. For instance, the function E(A) may be chosen as
E(A)=exp[—-3A2%(2+7AS%)/4] as is recommended in [3]. Furthermore, let A=D/é. The function E(D/§) thus
is equal to 1 along every dispersion curve D=0, nearly equal to 1 in their immediate vicinities, and negligibly
small outside the strips defined by —§ < D < §. The width of these strips, referred to as dispersion strips
hereafter, is controlled by the parameter . It is desirable that the width, equal to 2dn, of the dispersion strips
be constant. This condition can be satisfied by choosing the parameter § as the function é = x||VD|| =« /J,
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where « is a constant equal to half the width of the dispersion strips, and J is the Jacobian defined by (6). The
relation é§ = « ||V D|| follows from the identities é=dD=(8D/8n)dn=||VD||dn and dn=x.
The singular double Fourier integral Ry defined by (4) is expressed in the form

Ro=Ry+Rs, ®)
where the integrals R and Rg are defined as

R2=/ooopdp/_tdeN[l—E(DJ/n)]/D, Rs=/0°°pdp/fd8NE(DJ/~)/D; 9

The integrand of the integral R, is continuous everywhere. In particular, it vanishes along the dispersion curves
D=0. Numerical evaluation of the integral Ry thus presents no essential difficulty.

The singular integral Rs is now considered. The exponential function E(DJ/x) is negligibly small outside
the narrow strips —«x/J < D<«k/J, as was already noted. The integral Rs may then be expressed in the form

Rs=Y_ D=0[(s)ds with I(s) = /:dDJ(D,s)N(D,s)E{DJ(D,s) /s}/ D, (10)

where J(D, s) is the previously-defined Jacobian associated with the coordinate transformation (p,8) — (D, s),
and the limits of integration for the integral I(s) are taken as oo since the function E(DJ/«) is negligibly small
for |D|>&/J . The change of variable A=D J(D,s) yields

I(s) = /_ :au N, s)E(A/x) /A with N =NJ/[1+D(8J/8D)/J]. (11)

The function N (A, s) can be expanded in a Taylor series about the d1spers1on curve A=0, as follows: N (Ays) =
N(s) + AN'(s) + A2N"(s) /2 + A3 N"(s) /6 + ---, where N(B)(s) = [6"N(A s)/a,\"h =o. The part of the
integrand of the integral I(s) in (10) that corresponds to the even terms N(s)+A2N"(s)/2+--- are odd
functions of A . We then have I(s) = C x N'(s)+ O[C3 k3 N'"(s)/6], where the constants C and Cj are defined
as C = 7o E(A)dA ~1.16724 and C3 = [, A? E(A)dA ~0.18263 ; we thus have C3/6 ~ 0.03.

If the arbitrary parameter 5, which defines the width of the dispersion strip, is sufficiently small, we have

I(s) ~Cr[0N(\s)/0A]rce  with C= / ~ B(A)dA ~ 1.16724. (12)

We have N /OA = (ON/8D)/(d\/dD) = (dN/8D) /(J+D8J/8D); it follows that we have [ON/8A]x=0 =
[8N/8D]p=0/J(s), where _J(s) represents the value of the Jacobian J(D, s) at the dispersion curve D =0.
Furthermore, (11) yields [0N /8D |p=o = J(s) [BN/BD]D_O We thus have [ON /0 |x=0 = [8N/8D]p=0. We
have 8N/8D = (ON/dn) [ (8D/8n) = JGN/8n since J = 1/(0D/0n) as was previously shown. It follows that
[ON/8Aa=0 = J(s) [ON/8n]p=o . By substituting this expression into (12) and using (10) we may obtain

Rg =~ CKDZﬂ/Dw[aN/an]Dﬂ J(s)ds. (13)

The singular double integral Rg in (9) thus is expressed as an integral along the dispersion curves D=0,
and the singular double integral Ry in (3), (4) and (8) is expressed as the sum of the regular double integral R
defined by (9) and the integral along the dispersion curves Rs defined by (13).

Summary Of Results

The integral Rs in (13) is of the same form as the integral lim. 40 Re in (7) but involves the derivative N/dn
of the spectrum function N in the direction normal to the dispersion curves D =0 instead of the function NV .
The integral Rs in (13) and the integral lim—.+o R, in (7) may be grouped. Specifically, (3) and (8) yield

R=R; + Rz, (14)

where we have Ry =lim¢_.40 Re + Rs . It may then be seen from (7), (13) and (9) that the integrals R; and R,
in (14) are defined as

2 ds(ivrsignD'N+C:c6N/6n)/||VD||, R2=/0°°Pdp _:deN[l—E(n’D/IlVDH)]/D,
D=0
| (15)
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where (6) was used. The parameter £’ = 1/x controls the width of the dispersion strips. The constant C
is defined as C = [, E(A)dA. If the function E(A) is chosen as E(A) = exp[~3A2%(2 + TA®)/4], as is
recommended, we have C = 1.16724. The term ON/0n is given by VNe @ = VNeVD/||VD||. The expression
(15) becomes exact in the limit x — 0. However, the function E(x'D/||VD||) in the integrand of the double
integral R, in (15) vanishes in this limit and the integral R; thus becomes singular at the dispersion curves

D =0. The foregoing expression is valid for dispersive waves characterized by a dispersion relation of the general
form given by (2).

Application To The Problem Of Ship Motions

In the particular case of a ship advancing in regular waves the dispersion relation D, in (2) takes the form
D =(f+ie—Fpcos8)?—p, where f =w+\/L/g and F=U/\/3L are the nondimensional frequency and Froude
number, with w =wave frequency, L =ship length, U =ship speed, and g = acceleration of gravity. We thus have
D=(f-Fpcos6)’—p and D'=2(Fpcosf~f). It follows that we have signD’ = sign(Fp cos 6—f) . Furthermore,
we have D, =0D/0p = —-1-2Acosd and Dy =8D/89 = 2Apsinf, where A is defined as A =7— F2pcosf
with 7= fF = Uw/g. We thus have ||[VD|| = /1+ 4(r—F2a)cosf + 4(r— F2a)? with o = pcosf. In the
special case F' =0, corresponding to diffraction-radiation without forward speed, we have ||[VD||=1. At the
dispersion curve D =0 we have p = (Fa— f)?, as follows from the dispersion relation. We may then obtain
IVD|| = /1+4(r— F2a) cos 6 + 4F2p, which becomes ||VD|| = \/4F2p—3 =+v1+4tan? 0 in the special case
f =0, that is for steady flows. It may also be seen that we have VNeVD = N,D, + NgDy/p? = —N, —
2A(cosd N, —sin@ Ny /p) . Furthermore, we have cos§ N, —sinf Ny /p = N, where N, = ON/da. We thus
have VNeVD = —[N, +2(r—F%a) Ny} and N/0n = =[N, +2(t—F%a) N, ]/ \/1+ 4(r—F%a)cosf + 4F2p.

The dispersion relation D(8, p) is an even function of 6 ; the Fourier integration in (15) may then be restricted
to the upper half plane 0 < # < x. Furthermore, the upper half of the Fourier plane is subdivided into the
sectors [ <0 <m—v)}and [0<9<B]U[r—v <8< 7]. Within these two sectors, the dispersion curves
D =0 are defined by the equations cos@ = (f//p £1)/(F\/p) and 4F%p = [(1 £+ /T+4rcos)/ cosb]?,
respectively. The corresponding values of the functions signD’ and dN/On within these sectors are given by
signD’ =%1 and ON/On=—~(N,¥2F\/p Na) [\/4(F*pFf[\/p)—3, and signD’' = sign[cos§ (1+v/1+47cosd)]

and ON/8n = =[N, — Nqo(l1£+/1+471cosb)/cosf] /\/1+4‘rcos 6+(1++v/1+47cos)tan? §, respectively. The
integral R; along the dispersion curves in the two sectors is expressed as an integral with respect to p and 6,
respectively, and the integrations with respect to 6 and p in the double integral R, are performed in the orders
fdp [df and [d@ [dp, respectively. This partition of the Fourier plane into [dp [df and [df fdp sectors is
dictated by the shape of the dispersion curves, that is by the direction in which energy is radiated via the surface
waves. We thus have

R= [((X oo @ +oh@ldo+ [ [ o) h6)+ L@,
0 p=o [o

Blulr—7.#] p=o

with I, = iw signD’N + Cx ON /0n o(p) = (ds/dp) / ||V D|| and  o(f) = (ds/df) /||VD|;
furthermore, the terms I5(p) and I3(8) are defined as

I(p) = /ﬁ w86 1-E(D/IVOD)/ DG A, B = [ " dpp N(p:8) [1~E(='D/|VDI)]/ D(p: ).,

and we have N (6, p)= N(8,p)+N(—6,p). The function o(p) is given by 20(p) = 1/\/FZp—(1£f//p)? , and
the function o(8) by o(8) = p(8) /v/1+4r cos 8 with 4F2p() = [(1£v1+4rcosf)/ cosf]?.
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