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Introduction

In two recent papers [1,2] the diffraction of waves by one or two vertical cylinders
standing in a channel was considered in some detail. In particular, the authors calculated
a non-dimensional pressure ratio P, a function of position on the cylinder surface, defined
as the modulus of the pressure when the cylinder is in the channel divided by the value
when the cylinder is in open water. If the channel walls had no effect on the pressure
field then P would be unity for all positions on the body. As is only to be expected,
this is not the case. The mean values of P around the cylinder are often significantly
displaced from unity with considerable oscillations about the mean also observed. The
influence of the channel walls on the pressure field is clearly considerable, “but not in a
way that is easily predictable”{2]. It is the purpose of the present work to interpret these
numerical results with the aid of an approximate solution derived under the assumption
that the waves are much longer then a typical body radius. Curves are presented that
allow prediction of the effects observed in [1,2]. ‘

A body in open water

Firstly consider the case of a body of arbitrary cross section, but uniform throughout
the depth, standing in open water. Let S be the cross-sectional area and a a typical body
dimension. In the scattering problem, the depth dependence may be factored out and
the motion is governed by the two-dimensional Helmholtz equation. Choose Cartesian
coordinates, z and y, in a horizontal plane. For later convenience a reference point within
the body is taken to be at (z,y) = (0,d) and standard polar coordinates, r and 6, are
defined with origin O at this reference point. Thus, the body is offset from the origin
of the Cartesian system. A wave with potential e*** is incident on the body. Under the
assumption that ka = € <« 1, it may be shown that at large distances from the body,
and to leading order in ¢, the scattered wave field is
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Here H, denotes a Hankel function of the first kind and x and A are ‘dipole’ coefficients

corresponding to a uniform flow past the body in the z direction. Thus, if x(r,6) is the

response of the body to a uniform flow in the z direction then
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For a single circular cylinder of radius a, § = ma® and x = acos g/r.
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A body in a channel

Channel walls are now introduced at y = £b. The body is at (z,¥) = (0,d) and so
may be offset from the channel centre-line. No further assumptions are made, so that for
example if kb = O(1) then a < b. The effects of the channel walls may be interpreted in
terms of images (although the solution to be described is more easily derived in another
way). Let (r;,6;) be polar coordinates with origin O; at image j, j = 0 corresponds to
the body itself (in which case the subscript will be omitted). The result of introducing
the channel walls on the scattered potential (1) may be found from summing over the

image system. It may be shown that near the body the image Hankel functions may be
expressed in the form

E Ho(krj) = Z (@0,2m 08 2m8Jam(kr) + Bo 2m+1 Sin(2m + 1)0Ja i1 (k7))
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where J,, is a Bessel function and the complex expansion coefficients anm, Bnm, Gnm
and bnm have integral representations which are straightforward to evaluate numerically.
These coefficients depend on the two non-dimensional parameters kb and kd. If the body
offset d = 0, Bpm and anm, are identically zero.

From a calculation of the near-field potential, it may be shown that the non-
dimensional pressure ratio, defined in the introduction, is
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Here C is a constant that is identically zero for geometries involving circular cylinders
and T is the response to a uniform flow in the y direction and is defined in a similar way
to x above. Referring back to equations (3) the expansion coefficients appearing in (4)
may be interpreted as follows. The coefficient agg is the sum of the image H, functions
evaluated at O, the origin within the body, and the order e? term gives the additional
mean pressure field due to the image system. The three coefficients B¢1, @11 and b1; can
be interpreted as the strength of the uniform flow generated at the body by each of the
image sets in (3). The term at order ¢* involving aqg arises from an interaction between
the images and the open-sea solution and has no simple interpretation. These last four
terms give the variation about the mean of P as a function of position on the body.
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Results

The real and imaginary parts of agg and a;; as a function of kb are plotted in figures
1 to 4 for d = 0, corresponding to a centrally placed body. The oscillations about zero of
these quantities as a function of kb explain the behaviour observed in [1,2]. The mean
pressure variation at the body due to the channel walls is given by the order ¢? term in
(4) and the apparently unpredictable variations in the mean found in figure 4 of [1] and
figures 3 and 5 of [2] are explained qualitatively by reference to figure 2. The present
theory tends to underestimate the magnitude of the difference from unity of the mean
value of P while correctly predicting the sign.

For two identical bodies the cross-sectional area is doubled and the dipole coefficients
approximately doubled. Hence, from (4), the mean deviation from the open sea value
and the amplitude of the fluctuations about the mean will also be doubled and this is
consistent with figure 2 of [2].

One of the points made in [2] is the slow decay of channel effects with increasing
width and this is born out by figure 5 where Im ayq is plotted for a larger range of kb.
For comparison a curve of (kb)~!/2 is also included; it may be demonstrated that this is
the dominant behaviour of the expansion coefficients in (3) as kb — oo.

The effects of moving the body off the centre line of the channel show little pattern.
The imaginary part of agg is plotted as a function of offset d/b for three values of kb in
figure 6. The results for kb = 3 may be used to compare with figure 6 of [1] and again
qualitative agreement is found.

For d = 0 and kb < m, Reago = 1/kb — 1 and Rea;; = 2/kb — 1 so that for a
centrally placed circular cylinder (4) reduces to

P=1+€2-Z~Imaoo +eSZ— (2—%) cos 8 (5)
(no equivalent reduction appears to be possible for kb > 7). The deviation of P from
its mean value is given by the order ¢* term in (5) and this is zero for kb = 1.5. For
kb < 1.5 P will increase as @ increases from zero and for kb > 1.5 P will first decrease
with increasing #. This is entirely consistent with figure 4 of [1]. Observing that Im aqo
has a zero near kb = 2 it might be summised that, for a single cylinder, laboratory
measurements of the pressure will coincide most nearly with the open sea values for kb
somewhere in the range 1.5 to 2.
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DISCUSSION

CLARK: It would appear that your analysis predicts that the overall force on a cylinder
in a channel approaches the open sea value quite quickly as the channel width
increases, but the same is not true for the pressure. What advice can one give to those
wishing to make pressure measurements on a model in a wave tank.

P. McIVER: Based on my results, there doesn't seem to be a realistic strategy to reduce
errors in pressure measurements over a wide range of frequencies apart from the
obvious one of avoiding the cut-off resonances. As indicated at the end of the abstract,
there is a small range of frequencies below the first cut off for which pressures will be
close to their open sea values. There are similar point between all successive cut-off
frequencies but, beyond the first interval, they probably occur too close to the cut-off
resonances to be of practical value. Correction factors could be derived from the
present work but I'm not sure how effective they would be for a complicated
geometry.
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