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Introduction

When a small amplitude water-wave train is incident upon a fixed body, a second-
order analysis predicts that the body experiences a steady force and a force at twice the
frequency of the incident wave. The calculation of the steady force requires knowledge
only of the first-order potential and it may be directly expressed in terms of integrals
of products of first-order quantities over the mean wetted surface of the body and the
waterline. However, Maruo (1960) showed that the steady, horizontal force on a body may
also be written entirely in terms of the far-field amplitude of the first-order diffracted wave.
The calculation of the double frequency force is more complicated because it depends in
part on the second-order potential. The contribution to this force from the first-order
potential may be expressed in terms of integrals of products of first-order  quantities over
the mean wetted surface of the body and the waterline, in a similar form to the expressions
for the steady force. However, it is demonstrated below that this part of the oscillatory
force may also be written in terms of the far-field amplitude of the linear diffracted wave.

Theoretical analysis

- A wave is incident from the left on a two-dimensional, fixed body which is either com-
pletely submerged or intersects the mean free surface at right angles. The fluid is assumed
to have infinite depth and coordinate axes are chosen with the origin in the undisturbed
free surface, the z - axis horiziontal and the z - axis pointing vertically upwards. Mei
(1983) showed that the contribution to the double frequency force on the body from the
first-order potential, Re[—igA¢ie *“*/w], is given by
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in the usual notation, where S g is the mean wetted surface of the body, (—a,0) and (a,0)
are the intersection points of the body and the mean free surface and K = w?/g.

The functions ¥ = 9¢,/0z and x = —8¢,/8z both satisfy Laplace’s equation in the
fluid and moreover, x is the harmonic conjugate of ¥. Green'’s theorem is applied to the
two harmonic functions ¢, and ¥ yielding
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where C is the contour consisting of the mean free surface, the mean wetted surface of the
body and closing lines as ¢ — +co and z — —oco. Under the assumption that the linear
free surface condition may be differentiated tangentially to the boundary, 9 satisfies

sz—%:-:- 0 on z=0,|z]>a. (3)

Thus, contributions to (2) arise only from the body surface and the closing lines at infinity.
(It may be shown that whilst the derivatives of ¥ may be singular near the intersection
points of the body and the mean free surface, the singularities are not sufficiently strong
to contribute to the integral in (2).) After some manipulation (2) becomes
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where R is the first-order reflection coefﬁcient. From the Cauchy - Riemann equations,

=X on Sp, (5)

where 0/0s is the anticlockwise, tangential derivative on the body surface. Substitution
of (5) into (4) and integration by parts gives

1 3451 3¢1

K J5, 9z 05 —— dS = 2R + ¢(a,0) - ¢1(~a,0). (6)

‘By expressing 0¢1/0n and 0¢;1/0s on Sp in terms of their z and z derivatives and using
the body boundary condition d¢1/0n = 0 on Sp, it may be shown that
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Thus, (6) and (7) may be substituted into (1) to give
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if the body intersects the free surface and
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if the body is submerged.
A similar analysis in three dimensions yields far-field formulae for the horizontal com-
ponents of fél) in fluid of infinte depth, namely,
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if the body intersects the free surface at nght angles and
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if the body is completely submerged. Here, H (6) is the Kochin function, T is the mean
waterline and the incident wave is travelling in the positive z direction. (The formulae in
this section may also be derived using Tuck’s theorem, see Ogilvie & Tuck (1969).)

Results and discussion

Equations (8) - (13) are expressions for the horizontal components of the oscillatory
second-order force due to the first-order potential which obviate the need to evaluate V¢,
on the body surface. Numerically this i 1s more efficient, but the form of the expressions
also allow deductions to be made more easily about the force on certain special bodies.

Dean (1948) proved that there is no reflection from a submerged, circular cylinder at
any frequency. From (9), an immediate consequence is that the first-order potential does
not contribute to the second-order oscillatory force. This result was observed by Wu &
Eatock Taylor (1989) who integrated (V¢;)?n, over the surface of the cylinder directly.
Numerical calculations of the force on a semi-circular cylinder in the free surface were made
from (8) using a mulitipole potential formulation. The predictions are in good agreement
with the results obtained by Wu & Eatock Taylor (1989), by direct integration of the
second-order pressure over the body. It was observed numerically that

$1(a,0) - 4(=0,0) = —4R (14)
at all frequencies and so (8) may be rewritten as
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for this body. However, equation (14) does not hold for all bodies, as it fails for the vertical
barrier. (This may be easily demonstrated by considering the explicit representation of ¢,
for the vertical barrier, derived by Ursell (1947).)

The three dimesional formulae, (10) and (11), were verified for the vertical circular
cylinder by comparison with the results of Kim & Yue (1989). (The formulae were modified
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slightly to take into account finite rather than infinite depth.) It is interesting to observe
from equation (13) that the first-order potential does not contribute to the double frequency

force on a submerged body, in the direction perpendicular to the incident wave advance,
irrespective of any symmetry in the body shape.

Conclusion

Formulae have been derived which relate the oscillatory second-order force due to the
first-order potential to the far-field amplitude of the linear, diffracted wave. The resulting
expressions eliminate the need to evaluate the gradient of the first-order potential over the
surface of the body and enable simple observations to be made about the force on certain
special bodies. A straightforward modification of the theory whereby Green’s theorem is
applied to ¢,, the complex conjugate of ¢, and d¢,/dz or 0¢1/0y produces the far-field
formulae for the drift force derived by Maruo (1960). Furthermore, the expression for the
steady vertical moment on a three dimensional body, derived by Newman (1967), may be
obtained by applying Green’s theorem to ¢, and z 8¢, /0y — y 8¢ /Oz.
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DISCUSSION

MOLIN: What you have done applies to a fixed body. With a moving body other
terms arise in the expression of the second-order force. Have you considered how to
tackle them as well?

M. MCcIVER: I have not considered a moving body although it would be interesting to
do so. I anticipate that it would be possible to obtain alternative expressions for that
component of the force arising from the quadratic term in Bernoulli's equation, using
the method outlined here.

TUCK:

(a): Is the force on the horizontal submerged plate a “leading-edge suction” force
equivalent to that in aerodynamics?

(b) I would surmise that it might be easier to derive directly the result with 3/2 R
rather than the intermediate result with -4R. That is, I might have expected that the

$2(a) - 62(-a) terms .could somehow have been absorbed in an alternative (perhaps
more physically interpretable) expression.

M. McIVER:

a) I think that that must be correct, yes.

b) You may be right. However, I am unsure whether the 3R/2 result just applies to the
semi-circular cylinder or whether it is true for a more general class of bodies. I will
look into this further.

RAINEY: There is a very nice link with my slender-body results here, because your
zero-crosswave 2nd harmonic result follows immediately from eqn 8.1 in my 1989
JFM paper, provided there is no 2nd order potential in the incident wave (thereby

ensuring that is in my eqn 8.2 is purely 1st.order - Ae/Ax is obviously zero cross-wave).
The explanation is of course that for your fixed-body case there is no 2nd order
potential generated at the body surface and the effect of the 2nd order potential
generated at the free surface vanishes for any slender-body case (as I argue in my paper
at this workshop ).

So there is no 2nd order potential contribution at all, as you require.

M. McIVER: That is interesting. :

EVANS: A further special case is the fixed totally submerged matrice plate problem
which I solved in 1970 (J Fluid Mech.). I believe 1 considered both the mean second
order horizontal as well as vertical force. Have you checked whether it equals -1/2 R in

this case?
M. McIVER: I haven't checked the result for this specific body, but I believe my result

holds for general bodies.
My result is concerned with the double frequency component of the force not the

mean force but Maruo's result holds for mean forces.

LIU: For a submerged horizontal circular cylinder the mean horizontal drift force Fy
due to Vo1(1.V$1(1) vanishes. The next possible contribution to Fy is from Vo2V
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DISCUSSION

¢2(2). Is it possible to apply the procedure you described for V¢1(1).V1(D) to obtain a
similar far-field formulation for Fy due to V$2(2.V$2( or do you expect any difficulty
in doing this.

M. MCcIVER: You could certainly apply Green's theorem to ¢2(2) and 9¢,(2)/9x to give

an alternative expression for an integral of V¢2(2).V$2(2) over the body. However
because of the inhomogeneous free surface boundary condition at second order, you
would get integrals over the free surface coming in to the expression. Thus the
problem would not be simplified.
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