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1 Introduction

Consider an elastic body surrounded by an unbounded perfect fluid. Such a coupled system
has a countable set of real scattering frequencies: at these frequencies, the governing equations
have a non-trivial solution; in particular, the velocity potential in the fluid is not identically
zero.

Suppose, now, that a free surface is introduced, so that the body is deeply submerged. What
happens to the scattering frequencies? In her paper of 1985, Vullierme~Ledard showed that the
scattering frequencies associated with simple modes have purely real asymptotic expansions in
inverse powers of submergence depth. However, if the perturbed frequencies are indeed real,
this would imply an unexpected non-uniqueness in the physical problem: we expect that the
presence of the free suface will allow energy to escape.

Motivated by Vullierme-Ledard’s work (see also her thesis, 1988), we study here a simpler
problem involving an inclusion occupied by a compressible fluid instead of an elastic body. This
problem is qualitatively similar to the former. We concentrate on the imaginary parts of the
scattering frequencies and show that they are “exponentially small”. Explicit results are given
for the case of a spherical inclusion.

2 Formulation

The fluid occupies the domain B, C R3 and the inclusion the domain B;. The boundary T
between B; and B, is smooth.
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The linearised steady-state problem is studied; i. e. all time dependence is in the form e
We have to find the velocity potentials ¢ and ¥ such that

V23 =0 in B, (1)
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(V2+w?)¥ =0 in B; (2)
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0 ov
i =30 (4)
0d
(a—y + w2'§) |[Fs=0 (5)
. oo p2r 8%

1 2T 2 2 =

p_x&/() /0 Pl gy - 8 ! dody =0, (6)

where (p,0,y) denote cylindrical polar coordinates.

2.1 The truncated problem

We now proceed to study an equivalent problem in a bounded domain: the so-called truncated
problem. Let B, p be the domain delimited by the surfaces £p and T, where T is the surface
of a sphere of radius R, centred on y = % and p = 0 and which completely contains B;.

In the above formulation B, is replaced by B. g in equation (1). Equation (5) and the
radiation condition (6) are replaced by

A

ov

The operator T(w?;€) can be defined for non-real values of w?. It is the completion of a

densely defined operator that can be explicitly written down. When w? is real, it can be shown
that

£a= T(w? €)(2 |zy) (7)

(s/zn('r(u?;e)@)ads) 2 <0O(1) ase—0

2.2 The exterior problem

We must find the potential & satisfying Laplace’s equation in B, g, equation (7) and a Dirichelet

boundary condition on the inner surface I'. It can be shown that,if @ r=g € H §(I‘), then
a unique solution for & € H?(B,,r) exists. Moreover, the normal derivative of & on I' can be

defined and is a member of H‘%(I‘). Let us define an operator S(w?;¢) € L(HH(T), H~3(T))
thus: 5%

9%, 2.
n Ir= S(w?;€)g
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2.3 The interior problem

We now take for the datum ¢ in the exterior problem the trace of some potential ¥ € H 1(B)
that satisfies equation (2) and impose the extra constraint

ov
5o Ir= S(w? ) (¥ |r).

By applying Green'’s theorem, we can see that

W? /B YTV = /B VU.VT IV - /r (S(w?: )W) T7dS 8)

is true for any ¥, € H(B;).
The right-hand side of equation (8) can be written as a duality product

< B(w* €)%, ¥ >y1(,)m(8,)

and the left-hand side of (8) can be thought of as the duality product between ¥; € H!(B;)
and ¥ € H~}(B;). As equation (8) is true for all ¥; € H}(B,). the equation satisfied by ¥ is

B(w?;€)¥ = 20, (9)

We can show that the operator B(w?;€) has a countable set of eigenvalues. In general, these
will depend on w? and, therefore, equation (9) defines an implidt eigenvalue problem..

The eigenvalues of B(w?;0) are all real and are independent of w?. Furthermore, their
associated eigenspaces are finite dimensional. It is clear, then. that the implicit eigenvalue
problem is solvable when € = 0.

3 Results

If we consider only those eigenvalues whose associated eigenspaces bave multiplicity one (simple
eigenvalues), then it can be shown that these eigenvalues remain simple as w? and ¢ are perturbed
and that they depend amnalytically on w?.

If A(w?;¢) is a simple eigenvalue, then define

T(w?e) = Aw?e) = 2.

Denote by w?(0) a scattering frequency of the unperturbed problem: that is to say,

T(w?(0);0) = 0. (10)
Clearly,
aT
357 lu2=w2(0),e=0= =1 (11)

In addition to equations (10) and (11) we have
?
IT(w?e) ~ AW?)e 2 (1+0(1)) ase=0, (12)
for real w? and where A(w?) is analytic in w?. .
Equations (10)-(12) imply the existence of a locally unique function w?(e€) which has an

asymptotic expansion in integer powers of €. The coeficients of the powers of € in this expansion
are all real.
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Define x(z;€) = ST(Rw?(e€) + iz;€) and, for fixed ¢, treat x(z;€) as a real function of the
real variable z in the range [Sw?(¢), 0], then by using the mean value theorem, we have

X(@ (€)= x(0;6) = 87 XED |

at some point z, € [Sw?(¢), 0].

The left-hand side of the above equation is clearly equal to —A(&wz(e))e“g’a‘%zm.

. Ox(z,¢€) img Il
BT = IBRES laensgrin= -1

using equations (11) and (12).
Therefore, the leading order term in the asymptotic expansion of Swi(e) is

“,2
A(wP(0))e~2be~ 252

where b is the coefficient of the ¢ term in the asymptotic expansion of w?(e).

It can be shown that A(w?) is never positive when w? is real. Thus, the scattering frequencies
never move into the upper half-plane. This is consistent with the result that the only solution
of the homogeneous problem is the trivial solution when Quw? is greater than zero.

For the case of a spherical inclusion, the expressions for b and A(w?(0)) can be written
down explicitly. For a sphere of unit radius, the (m, n)th interior potential of the unperturbed
problem has the form jn(w?(0)r) P (cos 8)(a cos mé + bsin m¢), where j, is the nth spherical
Bessel function, (r,6, ¢) are spherical polar coordinates and w?(0) is a zero of jn—3. A(w?(0)
and b are ]

8 (n + 3)(w?(0))*"*72(w?(0))

- (n+ m)(n- m)!ja"z(o)zzj?‘(z)dz

0 ifn#0
b= w*(0)53(w?(0)) ifn=0
Jo O 232 (2)a
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DISCUSSION

URSELL: You might expect the damping to be exponentially small, since any

disturbance at depth 1/€ gives rise to a wave amplitude proportional to exp (-k/g).
LUKE & MARTIN: We agree. Indeed, it was this observation that led us to believe that
Vullierme-Ledard's results were incomplete.

KUZNETSOV: To obtain your result, you use the usual function spaces and consider
three problems in different domains. I want to bring to your attention the paper by
Agmon & Hoérmander []. Analyse Math. 30 (1976) 1-38] (see also the chapter entitled
‘Scattering Theory’ in Hormander's book). They have introduced a special function
space that includes the radiation condition. Their technique may be useful for your
purposes.

LUKE & MARTIN: Thank you for the references. However, we see no advantage in
using the technique mentioned over that used by us in which the radiation condition
is built into the operator instead of into the function space. Moreover, our technique
has distinct advantages if one is interested in actually computing the scattermg
frequencies, as any integration is over a finite domain.
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