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We consider the problems of the radiation and scattering of surface gravity waves by a
vertical circular cylinder placed on the centreline of a channel of width 2d and depth H, and
either extending from the bottom through the free surface or truncated so as to fill only part
of the depth. These problems, which are important due to the need to know how the side
walls of a wave tank affect the results of experiments on relatively large models, are solved
for arbitrary incident wavenumber k, by constructing appropriate multipoles for cylinders
placed symmetrically’in channels and then using the body boundary condition to derive a
set of infinite systems of linear algebraic equations. This method is superior to the more
usual approach of using a set of image cylinders to model the channel walls, in particular
the occurrence of modes other than the fundamental when kd > 7/2 is accurately modelled
and the correct form predicted for the far-field.

We begin by examining the problem of a plane wave incident on a vertical circular cylinder
that extends throughout the fluid depth and is placed symmetrically in a wave tank. Due to
the constant depth variation in this problem and the symmetry of the geometry, the problem
is equivalent to the two-dimensional acoustic scattering of a wave normally incident upon
an infinite array of equally-spaced identical circular cylinders, a problem with a very long
history. There are many methods of solution for this problem but the most often used is a
direct method of solution (Spring & Monkmeyer 1975). The main idea of the direct method
is to express the total velocity potential as a sum of an incident wave and a general circular
wave emanating from each cylinder in the array. In the case of a plane wave normally incident
on an infinite row of identical cylinders all these circular waves will be identical and thus
the body boundary condition need only be applied on one cylinder. Using Graf’s addition
theorem for Bessel functions these circular waves can be expressed in terms of coordinates
centred on one particular cylinder and then the boundary condition can be applied on that
cylinder giving rise to an infinite system of linear algebraic equations. In order to solve such
a system numerically a truncation procedure must be used and this corresponds to using
only a finite number of circumferential modes to represent the cylindrical waves.

It is well known that at any given wavenumber a finite number of propagating modes
can exist in a channel and that as the wavenumber increases so does the number of modes.
In fact if k is the wavenumber and the channel width is 2d then if (j — 1) < kd < (j — ),
( > 1) j modes are possible. Thus if an incident wave is scattered by a cylinder in a channel
there will be up to j reflected and j transmitted propagating modes. Calculating the correct
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far-field behaviour using the direct method discussed above is virtually impossible since the
velocity potential is descibed in terms of an infinite sum of circular waves, each centred at
a different point, each one of which is only known approximately from the solution to a
truncated system of equations.

Another difficulty which arises when using this method is the occurrence of slowly-
convergent Hankel series as is described in Thomas (1991) though a careful treatment in-
volving integral representations can alleviate the problems. Finally the method becomes
fairly unwieldy when used to solve problems involving truncated cvlinders and Yeung &
Sphaier (1989a,b) found it necessary to neglect the (albeit small) interference effects caused
by non-propagating modes.

In this paper we will consider problems involving circular cylinders in channels using
a fundamentally different method which correctly predicts the far-field behaviour, avoids
the treatment of slowly convergent series and is in principle, exact. The method is based
around the construction of suitable multipoles for channel problems. Thus when considering
a channel of water of depth H and width 2d suitable multipoles will be solutions of Laplace’s
equation in —o0 < z < o0, |y| £ d, —H < z £ 0 which are singular at (z,y) = (0,0) and
which satisfy the condition of zero normal velocity on |y| = d. They must also look like
outgoing plane waves as |z| — oo or else be exponentially small there. The key to the
construction of these multipoles is the derivation of suitable integral representations for
solutions to Laplace’s equation in a laterally unbounded fluid which can then be modified
to take account of the channel walls. The procedure is fairly complicated but picks out the
correct far-field behaviour in a natural way.

Once the multipoles have been constructed a wide class of problems can be solved in
a straightforward manner including both scattering and radiation problems, problems in-
volving cylinders which occupy the whole depth of fluid and problems involving truncated
cylinders, either occupying —H <z < =Dor -D<z<0,(D < H).
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DISCUSSION

MARTIN: You showed a graph of the sway added-mass coefficient, with a singularity
at the trapped-mode frequencies. What happens if you truncate the cylinder?

LINTON: When the cylinder is truncated so that it extends from the free surface part
way to the bottom the qualitative behavior of the sway added mass is the same as for
the non truncated cylinder. If the draft of the cylinder is D, then as K changes from H,
the total depth, to O the value of the wavenumber, kd, at which the sway added mass

is singular change smoothly from the value for the nontruncated cylinder to n/2.

MILOH: Near the cut-off frequency viscous damping becomes important and so are
the non-linear terms. Can you give us some estimates of these two effects?

LINTON: The short answer is no. My aim is to fully understand the linear problem for
arbitrary bodies in channels and I have chosen circular cylinders as a starting point as
we can go a long way towards solving this problem analytically.

PAWLOWSKI: You mentioned that at present you concentrates on understanding the
linear aspects of the problem, which obviously is quite important for people who do
experiments. Do you plan an extension of the work to deal with non-linear aspects of
the some physical situation?

LINTON: The reply is the same as to the question of Miloh.

YEUNG: You have mentioned that the method of images may not obviously yield the
far-field wave behavior in the channel. This is not true. To my recollection, the
Hankel series (i.e. the slowly convergent portion) was summed analytically and the
resulting integral form in an Appendix of the JEM paper (Yeung & Sphaier, 1989a) I
can be shown to yield such wave field. In this same work, we found that if the body
size approaches about half-width of the tank, the resonance peak of the added mass (in
heave) disappears. I am most gratified to see that this feature is confirmed by your
work. Finally, I want to mention that it is nice to have expressions of such multipoles
in a channel.

LINTON: With reference to the farfield behavior of the solution, it is my opinion that
the multipole method is a more natural method of solution for this problem and the
behavior in the farfield can be obtained in a much simpler manner as the residues of
various integrals.

NEWMAN: How does the multipole method converge when the cylinder diameter
approaches the channel width?

LINTON: The expansions of the multipoles in polar coordinates are valid over the
range O<r/d<2, i. e. up to the first image singularity in the wall. The cylinder diameter
approaching the wall is equivalent to a/d — 1 and this is well within the region gf
validity of the expansions. As a result no problems of convergence are encountered in
this limit.
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DISCUSSION

TUCK: I take it the added mass actually becomes infinite at the trapped-wave
frequency. If so, what happens to its value if the body is made slightly non-symmetric
or is moved off-center, so that the problem is not exactly anti-symmetric. It would
seem rather surprising if a small change in geometry could produce a large change in
the added mass.

LINTON: The singularity in the added mass coefficient p is caused by a singularity in
the complex force coefficient q(w) = v(w) + i p(w) on the real w-axis. For an off center

cylinder this singularity is close to, but not on, the real w-axis. This results in large
spikes in the damping and added mass coefficients. As the cylinder approaches the
centerline the spike in the damping coefficient gets higher and narrower until when

the cylinder is on the centerline the damping is identically zero (kd<n/2). The spike in
the added mass coefficient however becomes a singularity in this limit.

EVANS: It is perhaps worth making the point that the singularity in sway added mass
at the trapped mode frequency may be overlooked because of the closeness of the first
cut-off frequency for the channel. This is particularly true for small or truncated
cylinders. It is only for large cylinders extending throughout the water depth that the
trapped mode frequency is markedly distinct, and of course below, the cut-off
frequency. '
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