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_ There are numerous papers treating stationary waves due to the
forward motion of a body (=see, e.g., [1,2] and bibliography cited
there). Non-stationary ship waves are investigated to a lesser
degree Qsee [3,41). The situation is opposite from the mathematical

point of view. Some Solvability and uniqueness theorems are proved
for dirferent Tformulations of the linear initial valus problem
describing forward motion of a submerged body (see [5,81). In the

same time only for 2D Neumann - Kelvin problem the well-posed
formulations exist [7].

_In this work the effect of high-frequency oscillations of
Forward velocity on the wave-making resistance is cosidered. Let a
boedy i3 submerged into an incompressible inviscid heavy fluid of
infinite (for simplicity) depth. Let its dimensionless velocity has
the form U(t/g), where U(T) is a positive differentiable function
having the unit period and t is the dimensionless time. Only
dimensionless quantities will be used in the paper. It means thét t

is obtained by dividing the dimensional time by, e.g., (1/g)%2 ,

where g is the acceleration of gravity and 1 is the characteristic
length. In the same manner U is obtained by dividing of dimensional

velocity by (1g)*/2. If € << 1, then the velocity oscillates at the

frequency, which is high in comparison with (g/1)%2 .| In this case

the singular perturbations method is applicable .

Qur aim i3 to derive the asymptotic formula for the wave-making
resistance R(t, T ior‘ the body, C = t/€ . Then we shall compare the
mean value <R> = R dT with the wave-making resistance R (t) of the
same body moving with the mean velocity <U>». Numerical computations
For the 2D problem show that there exist cylinders such that 1<R>|
< IR, (up to atermO (€) ).

Formulation and solution

Let a_solid body occupies the domain DcR3:=1{ (x,y,2) : v < 0,
(x,z)€ R®} and D is bounded by the closed surface SCR3. Let the
plane { y=0, (X,2)€ R*} is the free surface of fluid at rest. So the
body is submerged and it moves in the direction of the x-axis with
the velocity U(t/€). We choose vertical size of the body as the
characteristic length 1.

We seek a pair 4) ,'fL) satisfying

vid =0 _in W=R3\TD 1
q)t—_ljuol@x—+ ’L:E)), g:g -t>/o 3
Bcﬁ/ 2y co""'s(n,xj on S 4
= f ,Y=D = 5)
(fg=ff,y=o}t 0 (3

Thus © (x,y,2,t, £) can be regarded as a velocity potential ol in-
duced waves iﬁ fhe coordinate system moving with the body, % (x,2,
t, £), is the corresponding elevation of free surrace. The unit nor-
mal n is directed into W.

129




For the pair ({, %) satisfying (1) - (6) with U(t/€ ) described
above the rollowing asymptotic fomulae are true as & — O :

D=L Utre) - <> 1 v (x,v,2) +dP,(x,v,2,t)
+ el g (t76) v (V02,8 ¥ O, (£y,2,8) 17+ 0 (£2) ()
% =m (x,2,t) + € {P(t/7e) [(9%,/0%)(x,2,t
*(0V,/70y)(%,0,2)°3 + % (x,2,t) } + D((az)) (8)
Here

P(T) = §1(3&/0T)(T,6) U6) d6, 0<T < 1
&(T,6) = HT-6) - (T-6) - 1/2

where H is Heaviside-function. To the half-axis T > 1 the function

$(T) is extended periodically. The function G(T,6) is generalized

grsgr}_ function of periedic boundary value problem for the operator
T

The functions v, (m = 0,1) must be determined from:

Vv _=0inW,.v, =8 (9d,/9% fory =0
" v, /9n =*so"'mcos(?1,x) on S (9)

The pairs (On., 2w (m = 0,1) are the solutions of the initial-
boundary value problems

v P, =0 in VW (10)
0P o9

ot Pt =0y =0 tso0 D

>
Ty G - G0m -0y =0 (12
acpmfan = Oop<l> cos(n,x) on S (13)
O, =-p@179M,/9x™, v =0 } o (14)

. -
- pon" [ L8, gz ] v=0 9

Here Snm is the Kronecker delta.

Thus o Can be regarded as the velocity potential of waves due
to the body at the rforward speed <U>, o 15 the corresponding ele-
vation of free surface. The formula (8) demonstrates that the free
surface elevations m and 7 , coinsides up to a term O( € ). But the
same is not valid for potentials and o -

For m = 0 the problems (3) and (10)-(15) can be solved indepen-
dently of each other. Then we have to find v, from (3), and at last
we obtain the solution @, of the problem (115) - (158). In analagous
manner one can derive an arbitrary number of terms to prolong the
expansions (7) and (8).

Wave resistance and other characteristics

Applving usual formula we get from (7) that for the force F(t,‘t)
acting on the body the following asymptotics is true
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F = UIS(T) SS v,n dS + S,S(aadzco - < aacgf) nds
- L WT) - <1 g g;n’ R dS
+ [ W(T) —.<U>JSS [ v, - < aag - aad:: I nds+0(e)
Then, averaging in variable T we find that
<F>=?;(t)-(<u%—<u>z)gs g";°h'd5+0(a) (16)

where
Fo(t) = SS(_%%O_ - <> %) n ds

is the force acting on the body moving with the mean velocity <.
The second term in (16) is proportional to the dispersion of velo-
city <U%» - <p? = 0.

Let consider the horizontal component R(t, T) of force (wave-
makinglreSistance). Using the boundary value problem (3) we get

from (16) that
<R =R (t) - (<UD - <) 1+ 0(€) (17)
1= 9 Vo cos(n, x) dS——i-S 19 v,1* cos(n,x) dS
o 3 2 EARRY’ = 2 g ° co v‘n,x
} 0Ps _ .y Do\ .
Ry(t) = § (F3% - < 522 ) costn,®) as

The last is the wave resistance of the body at the constant sSpeed
<U>. The asymptotic formula for R then may be written in the fol-
lowing form

U’(T) 2
R(t,T) = <R - ——€—-SW|V v, |~ dxdydz

~ 2V, 20, 22,
+ [ < - U(T) 1 SS( 5= 3n Vom> dsS + O(€g)

The supplied power can be obtained multiplying (-R) by U. Then
the average supplied power is given by the followihg expression

2
-<WR, + (<UD - <) <>, + Ss(g¥° %qr)f + V°%?¢a—%1)ds} +0(€)

It differs both from the power required for the motion at the mean
speed <U> and from the power required for overcoming of the mean wa-
ve resistance <R>.

Discussions and numerical examples

Formula (17) shows that the sign of the difference <R> - R, de-
pends on the value of I,. As wave resistance is directed opposite
to the x-axis then we have the inequality |<R*! & IR | if I, < O.
S0, it i3 of interest to find bodies with I, < O.

It is easy to see that I, = 0 if the boedy is symmetric about the
middle-plane (without loss of generality we can choose x = O as the
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middle-plane). Indeed, in this case cos(n,x) iz an odd function of
X. Then the solution v,(x,y,2) of the boundary value problem (9) is
an odd function of x. The zame is true for the integrand in I..

For numerical example the 2D problem (3) with an isosceles tri-
ang%g ABC (=zee fig.) as contour S is convenient. For any contour S
we have

I, = SS[ cosa(n,x) + (9 v,/9s) cos(s,x) cos(n,x) 1 dS
In the case of triangle ABC we get SAB cosa(n,x) dS = -sind

C
5 (Ov, /93) cos(s, x)coa(n, x) dS ==-%[2V°(B) - v (A) - vo(D)JSinzcl

ABC

So, I, (ABC) < O if 2v (B) - v,(A) - v,(C) < tgd. For triangles
that correspond to the points above the curve (see fig.) the in-
equality I, (ABC) < O holds. The opposite inequality takes place
For triangles that correspond to the points below the curve. For a
triangle AB’C which is symmetric about y-axis with any triangle ABC
shown in rig. the inequlity I _(AB'C) > 0 is valid,

Numerical results are also obtained for right triangles that
have one of its legs on the y-axis.
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DISCUSSION

TUCK: Is there any circulation around your body? I ask because your body has sharp
corners where in practice one would have to use a Kutta condition to fix the
circulation?

KUZNETSOV: In the performed calculations the vertices had been replaced by small
circular arcs. Hence, there was no need in the Kutta condition and circulation.
Moreover, 2D problem was considered only to simplify numerical examples. My
formulas are true for 3D problem.
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