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Introduction

At the last workshop a proof was given [11 for the existence of trapped
modes in a wave tank containing a symmetrically-placed vertical circular
cylinder extending throughout the depth of the tank, provided that the cylinder
was sufficiently small. Computations suggested that the modes, antisymmetric
about the centre-plane of the channel and symmetric about a vertical plane
through the centre of the cylinder perpendicular to the channel walls, appeared
to exist for all sizes of cylinder even when completely blocking the channel.

A full version of this work can be found in [2].

In the present paper we extend our understanding of trapped modes by proving
their existence for a different geometry, namely a vertical thin plate on the
centre-line of the wave tank and extending throughout the water depth. We show
that modes antisymetric about the centre- line exist provided the plate is wide
enough and that as the width increases more and more trapped modes arise. The
technique, due originally to Mittra [3] and adapted by Jones [4] provides a
constructive proof which enables the trapped modes to be computed extremely
easily. The method depends upon being able to solve explicitly a related
problem for a semi-infinite plate.

Formulation

The depth dependence cosh k(y+h)can be extracted leaving a two-dimensional
problem for a function 4(x,y);

(V2 + k*)g = 0 0 <y<1 allx (2.1)

¢ =0 y =0, X > a (2.2)

gy = 0 {y =0, 0< x< a §2.3§

y=1,x>0 2.4

g — 0 X —w, 0Ly <1 2.5

be = 0(r7 %), = {(x-a)24y%)% — 0 (2.6)

gx =0 x=0,0<y<1 (2.7)

Here k is the real positive solution of

w® = gk tanh kh. (2.8)

Notice that the channel has half-width unity and depth h, and the half-width of
the plate is a, and because of antisymmetry about y = 0 and assumed symmetry
about x = 0 we need only consider x > 0, 0 <y < 1.

We shall prove the existence of a non-trivial solution of (2.1 - (2.7) for

some value of k < % and a sufficiently large value of a. Then the trapped mode
frequency w is givén by (2.8)with this value of k.

We denote 0 <y < I, 0 < x <abyregionI; 0 <y <1, x2abyregion II
and their common boundary 0 < v < I, x = a, by L. In region I we write
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blx,y) = ) Ub SOSMRRC y (y) (2.9)

/) . Sinh
1 -
where ¢a(y) = (€n)%cospay, pn =07, n = 0,1,2,..., €0 = 1, en = 2, n > 0,

= (pa®-k%)%, ko = ik and 4(x,y) satisfies (2.1), (2.3), (2.4) and (2.7).
In region IT we write

4(x,y) =

where ¥,(y) = 2%Zsinl,y, ¢, = (n-
Matching ¢, 4« across L gives

UL?) (-ka)~te Bn(X-2)g () (2.10)

>~ 8

Wi =

o, n = 1,2,,..., ko = (€n2—k2)% >0V .

©

) U a(y) = ) UPEL(y) yel (2.11)

n=0 n=1

@

and ) USVka' coth kaa ¢a(y 2 UL (-5a)™t ¥a(y) vy € L. (2.12)

n=0
If we now multiply (2.11) and (2.12) by ¢m(y) and integrate over L, and then
eliminate Un'*’ between the resulting infinite system of equations we obtain

@

1 €n | _ - ‘ o 4
y Un{ﬁn_km R En+ﬁm] =0, (m=0,1,2,...) (2.13)

n=1

1 -2k a
where Un = US?'4a/2%kokn and én = ¢ ™ and we seek a solution of (2.13)
1
satisfying Us = 0(n™®) as n — « to ensure that (2.6) is satisfied.
Before proving that (2.13) has a solution consider the following heuristic
argument. For a >> 1 then away from the edge x = a, ¢ ~ Acoskx. Close to the
edge we appear to have a wave incident from x = - being totally reflected,

since k < %, with reflection coefficient R = -e®'4, say, with |R| =
Thus the solution looks like g ~ B(e '¥(X=2)4 Re=ik(x=23)) and matching these
two solutions away from x = 0 requires B = %Aexp(ika) and
R = -e?!8 = g2ikea (2.14)
and 1t 1s this condition which provides an approximation to the trapped mode

frequencies. In fact R can be determined explicitly from the Wiener-Hopf
technique whence it is found that

H% z {tan™* (k(kn)-tan™' (k/ka)}. (2.15)

It is easy to see that (2.14) must have solutions since R is independent of a.
Thus we can write (2. ) in the form

- = ka + u7, n an integer.

o=y
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Then by fixing k, and hence f, it is always possible to fix n and choose a such
that this is satisfied. Indeed there are an infinite number of solutions for a,
the difference between successive values approaching 7/k as a increases.

Before returning to the trapped mode problem it is instructive to try and
solve for R using matched eigenfunction expansions. The solution in II remains
the same whilst in I now extended to x = -

4]

. . ko (>
¢(x,y) - {e1k(x—a)+ Re-;k(x—a)}%(y) + zUr(li)kn—ze n ¥ (y)

n=1
Repeating the matching procedure now results in
Y e = fmes (W= 0,1,2,..) (2.16)

n=1

as the infinite system needing to be solved with U, as before. The explicit
solution of (2.16) is achieved by considering

_Q_}JJ —%Z dz, m = 0,1,2,... (2.17)
C

where f(z) is a meromorphic function satisfying
(i) 1f(z) has simple poles at z = k4, n = 1,2,..

(ii) f(z) has simple zeros at z = ko, n = 1,2,...

-1
(iii) f(z) = 0(z *) as |z| — o on Oy, — . Here Cy is a sequence of
circles, centre at the origin, radius Ry = (N-%)7.
Then Iy — 0 as N — « and,

z E§§ﬁfﬂl -f(ko)bmo, (m=0,1,2,...)

where Res(zo) is the rebldue of f(z) at z = zo. So (2.16) is satisfied if
f(ko) =1 and Un = Res(kn), n = 1,2,... . It can be shown that

f@):@@):hﬁ&%%%% (2.18)

satisfies all the required conditions where the constant h is given by f(ko) =

hg(ko) = 1. Some further work confirms that R is given by -e*'“ with § given by
(2.15).
Returning to the trapped mode infinite system (2.13) we write
1 1 n o -
C
N
and we write f(z) = h(z)g(z) 1 (2.20)
with g(z) as before and hiz) =1 + 2 An/(2-ka). (2.21)

kn ~ Kn+knm

Then ) Res(mn){ﬂn}_ . _tn } ¢ f(ka) + Eaf(cka)= 0. (W= 0,1,2,...)
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and (2.13) is satisfied provided

Un = Res(kn) (2.22)

and f(kn) + €nf(-kn)= 0, (m=0,1,2,...). (2.23)
We consider m > 0 first. Direct substitution in (2.20), (2.21) results in

An + ) Knohn = Ca (m=1,2,...) (2.24)

where Cn = £nBn, Knn = Cn/(kn+kn) (2.25)

and B = kng(-kn) ]i[ (1-Kn/kn) /I l(l—km/kn) (2.26)

Now (2.24) has a unique solution A, with BAn? < o if ZCu? < o and E%K..2 = p <1
-2k a
and because of the term {m = e ™ it is easily shown that these conditions are

satisfied for sufficiently large a. Thus the A. exist and are unique as does
h(z) and hence f(z) from (2.20).
Finally when m = 0 we require from (2.23)

- ika _ ‘f(‘ik) - -g("ik)h(’ik) _ 214 18 _ i
fo = e? = f(ik) = g(ik)h(ik% = -p-2i8g2 = Re2i®
since arg g(ik) turns out to be f as given by (2.15).

Here ¢ = arg{l- z An/(kn+ik)}. Thus the exact condition for trapped modes is
n=1

Re?1® = g2ika (2.27)

or % - f+ 6 =%ka+ nr, n integer. (2.28)

0(e na) and (2.27) reduces to (2.14).

It is straightforward to prove that (2.28) has an infinity of solutions for
a sufficiently large. Similar arguments can be used to prove the existence of
trapped modes which are antisymmetric about x = 0 for a large enough.

As a increases § — 0 rapidly since A,

Conclusion

It has been proved that there exist trapped modes in the vicinity of a
vertical thin plate placed on the centre line of a wave-tank provided the plate
width is sufficiently large. In fact numerical work indicates there is always
at least one trapped mode for any value of a. The problem described here is
identical to a plate in a two-dimensional acoustical wave guide since the
governing equation is the Helmholtz equation. In fact such modes have been
observed experimentally in wind tunnels by Parker [5;. For a recent description
of the occurrence of trapped modes in acoustics see Parker [6].

It is possible to use the method described here to prove the existence of
trapped modes when the plate is off the centre-line [7]. These modes correspond
to frequencies which are embedded in the continuous spectrum.
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DISCUSSION

MILOH: In the case where the plate is off-center you presented some graphs displaying

the solution as a function b/d. An interesting limit is b/d — 1, in which the plate is
merged with the upper wall. Here the potential is null and it is important to
investigate the asymptotic form of this limit, i.e. the precise way it approaches zero.
This limiting case was not presented in the graphs nor discussed in your talk and I
wonder if you can elaborate on it a bit more.

EVANS: As the plate moves closer to the side wall the trapped mode frequency
approaches the first cut off frequency for the wave tank. It ought to be possible to
determine this analytically but we have not yet done this.
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