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Summary

We consider the problem of the unsteady incompressible flow around a flat plate in a finite depth
with free surface. The calculated flow is induced by the diffraction of an incoming Airy wave on the
plate. The model is valid for three-dimensional flows, but only the 2D flows case is discussed here. The
model takes into account the upstream reflected waves, the downstream transmitted waves ard the vortex
generation induced at the body boundary. The unsteady Euler or thin layer Navier-Stokes equations are
solved using a fully implicit time scheme. At each physical time step, the solution of the differential
equations system is obtained using a pseudo-unsteady approach. This iterative method permits to find
the converged solution at each time step. The free surface is treated by means of a moving boundary
fitted mesh and we apply the classical non-linear dynamic and kinematic conditions on this surface.

I. Problem formulation in physical plane

The fluid flow is computed around the flat plate in a domain bounded by the free surface SL, the bottom
F and two upstream and downstream vertical boundaries AB,CD.

I.1 System of equations

The unsteady Navier-Stokes equations for incompressible fluids can be written as follows:

—_— d F . - x4 - = —
(1) div(T) =0 ,-—';—2—+dw(pU®U+pI—T)=pg
where p is the (constant) fluid density, T the velocity, p the pressure, T the unity tensor, g the
gravitational acceleration, 7 the viscous stress tensor.
1.2 Boundary conditions

1.2.1 Plate and bottom

In the inviscid-fluid case, a zero normal velocity condition, T.®= 0, is applied on solid surfaces. In the

case of a viscous flow the classical no-slip condition T =0 is assumed.
I1.2.2 Free surface

a) Kinematic condition:

Let F(z,y,t) = 0 be the free surface equation in 2D flow. The slip condition on the free surface can be
written:

dF(z,y, )
) _ﬂi_y_ﬂ=<m

7 -+ F.grad) F(z,y,t) =0 on F=0
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b) Dynamic condition :

The viscous stress tensor is neglected at the free surface, so that the pressure is equal to the constant
atmospheric pressure p,:

(3) P =DpDq ODF=0

I.2.3 Upstream and downstream boundaries

The boundary conditions to be applied on the vertical upstream and downstream boundaries must

express the property that the boundaries do not reflect outgoing waves. We use an Orlanski type open
boundary condition {1}.

Generally speaking, this condition applied to a variable ¢ assumes that, in the close neighbourhood of
the bounbary, ¢ is governed by a transport equation of the form:

(4) %?— +Cp 7V .gradd =0

where 7’ is the outward unit normal, and C; > 0. The transport velocity C, is unknown and is
determined by applying (4) at the inner mesh point closest to the boundary where ¢ is known. Then (4)
is applied at the boundary point to determine ¢ at this point.

On the upstream boundary AB, we impose the condition that the flow is the superposition of an Airy
incoming wave and a reflected wave. The Orlanski condition is applied only to the reflected wave.
On the downstream boundary CD, the Orlanski condition applies to the complete flow.

I1. Problem formulation in transformed plane

II.1 Coordinate transformation

An adaptative mesh is used in order to obtain a precise treatment of the free surface position. The grid
is constructed so that the free surface, at each instant, is a mesh surface. The purpose of the coordinate

transformation is to keep a fixed coordinate system (£,n) in the computational domain for each physical
time step. Let us consider the general transformation of coordinates from the physical plane (cartesian
coordinates z,y) to the computational domain (coordinates &, 7):

(5) ‘5 = Gl(zvy)t) y = Gg(m, y)t) ) t’ =t

or its inverse, from the computational domain to the physical domain:

(6) z=gi(€,nt) =g2(6,mt) t=t

Assuming that the free surface is the coordinate surface n = 7z = constant, the free surface equation
can be then written as:

(7) y = g2(6, .t ) = Hi(€,1)

The transformation imposes the condition that the bottom (y = 0) is the surface (7 = 0), and that the
breakwater boundary is a part of the surface n = np = constant.

I1.2 Transformation of the equations

The equations are expressed in the curvilinear coordinates (£,7) defined by egs. (6) or (7). The time

a
derivatives will be denoted by ;% if they are calculated at fixed (z,y) , and by FTd if they are calculated
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at fixed (¢, 7). If one uses the viscous thin-layer assumption (3], the equations (1) can be written with
these coordinates in the conservative law form as:

(DL (2) -0
¢ \J am\J/)
90Q 9F 9G 8G, 1
o Tt T t7°

(3]

(8)

where J is the jacobian of the transformation.

_9¢n)
®) 7= ey

and:

_ y-1[eu
Q=J l_pv
A 1-1 'pu(£:+ﬁ)+£zp]
F=J | pv(ée + T) + &yp

é = J—l -Pu(ﬂt + 17) + nxp]
| pv(ne + 7) + myp

= [—29]

and u, v are the cartesian velocity components.
The classical viscous thin-layer assumption is employed by retaining only the viscous diffusion term in
the n-direction, which is given by:

(10)

A ¥ 2 2 U
(11) Gu = Bff (nzo + ny ) ['U:;]

tesys is the global viscosity, which may include the eddy-viscosity.

The contravariant velocity components used in the equations are defined as:
(12)

I1.3 Free surface condition

The free surface condition (2) can be written, using the equation (7) of this surface:

d '
(13) 7 (y_QZ(ErﬂInt)) =0, n=mng
hence:
dg>  d€ 992
_—— - ===, =
where:
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(15) =&+ ubs + v6y

The relation (14) provides the value of —= on the free surface, {; being obtained from the definition

itself of the coordinate transformation. In fact, for our problem, it is not necessary that the coordinates
lines (¢ = constant) vary with the time, and we can take & = 0.

. . v/ .
If one knows __gTz for n = n, the coordinate transformation allows one to calculate :9% at any point

of the plane (£,7n) (then at any mesh nodes), and then to determine how the coordinate transformation
varies with the free surface movement during the time.

III. Time discretization and pseudo-compressibility method
ITI.1 Discretization of the flow equations

Equations (8) are discretized at time ¢**! = (n + 1)At by means of a second order fully implicit time
scheme:

P (a)n+1 (6)13-}-1
(16) € \J 7

3 13+1_4 "y n—1 - , 1 n+1
Q 2§t Q +L(Qn+1,p;+1)=(J) s

where:

A\ B4l a\ B4+1 a n+1l
oF 9G oG
n+1 n+1 ol - 2=
(17) L@ )= (06) +(3n) (0n>

The method of pseudo-compressibility for solving the steady incompressible flows discussed in [4,5] can
be extended in order to solve the equations (16) of primitive variables Q"*! and p"*! by taking into
account the pseudo-unsteady system (18) presented below. To simplify the formulation the superscript
(n+1) on the unknown variables at the time (n+1) is suppressed in the following development. The
system is solved by making iterations on the pseudo-time 7 until convergence is obtained.

8 (1.\ 9 (a\,6 8 (%) _
= (7) % (7) 5 (3) =0

(18) a" n n—-1 - A 3
¢.39-49"+0Q oF\ . (96 _ (4G, _(1)
ot 241 +(a§)+(an) (an)‘ 7)S

where:

(19) Q=7 [p]

Here j is a new variable called pseudo-density, and the pressure p is given as an explicit function of 4:

(20) | p=G(p)

In the inviscid flow case, the system of equation (18) must satisfy the hyperbolicity condition, which leads
to the conditions [5}:
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(21) p>0 and G'(p) > 0
We take p = CoLn(p) + C,, where Cy and C; are constant.

To solve system (18) in 7, we use the numerical method developed previously by Jameson et al. {2] and
Vatsa 3] ; this is a finite-volume method based on a space-centered scheme, second and fourth order

artificial viscosity terms, Runge-Kutta time stepping,and implicit residual smoothing. A local time step
is used. :

II1.2 Boundary treatment by the compatit;ility relations

The boundary treatment at the free surface and at the upstream and downstream boundaries is
based on the use of the compatibility relations (CR) deduced from the system (18) which is hyperbolic
with respect to 7 in the inviscid case. In this approach, one applies the CR associated with positive or
null eigenvalues (for the outward normal direction to the boundary) and the missing CR (associated with
negative eigenvalues) are replaced by the boundary conditions [6].

IV. Code development

A code has been developed for 2D and 3D flows based on the method described above. Unsteady
flows without free surface have been computed and we are in the process of implementing the free surface
boundary condition. Two-dimensional test cases without free surface will be presented at the workshop.
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DISCUSSION

YUE: Do you account for the normal and tangential gradients of the (viscous) stress
tensor in your free-surface dynamic boundary conditions?

DE JOUETTE: No, we neglect the viscous stress tensor in the free-surface dynamic
condition.

RAVEN: Artificial compressibility methods have originally been proposed for steady
problems. To apply it to unsteady flows, you use an iteration loop for pseudo-time, for
each time step.

* How many iterations are needed for this inner iteration loop?

* Do you think the greater robustness of compressible codes is worth the large amount
of extra CPU time spent, compared to a truly incompressible approach?

DE JOUETTE:

1 - The iterations number depends on the level of convergence you want to obtain. For

example, in order to have log(residual) < - 3, (with residual =

9 )2, (3u )2 (3Pv )2
NORRGE

you need around 20-25 iterations.

2 - On one hand, the first tests we made with unsteady flows (without moving mesh)
give us some CPU time which can be compared to other incompressible approach.
And on the other hand, we want to introduce an implicit scheme in pseudo-time and
to implement a multigrid method to impose convergence.

YEUNG: We have developed some rather elaborate algorithms that can handle steep
waves for finite-difference method. This has been applied to inviscid-flow and viscous
flow problem with a body near or in a free surface. They are described in the following
works:

a) Yeung & Vaidhyanathan, Int. |. of Numer. Methods in Fluids, vol. 14, 1992;

b) Yeung & Ananthakrishnan, J. of Engrg. Math., vol. 26, 1992.

You may find them helpful.

GRUE: By applying your method it is expected that acoustic streaming appears at the
bodies. For 2-D bodies in free surface flows a constant circulation around the bodies
then occurs. This circulation greatly affects the wave forces, as for example observed
experimentally by John Chaplin (1984), J. Fluid Mech. It will be interesting if your
method can reproduce the experimental observations. To my knowledge, this has not
yet been done.
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