A discrete time model of the transient hydrodynamics Green function.

A. CLEMENT
Laboratoire de Mécanique des Fluides - division Hydrodynamique Navale

CNRS URA 1217, E.C.N , Nantes, FRANCE

The solution of transient hydrodynamics problems in the frame of the linearized
potential theory always involves the computation of convolution integrals. In the
usual B.E.M approach, this task represents the major part of the whole CPU time.
As an example, let us consider the generation of surface waves by the prescribed
motion (V.n ) of a body (§) around its equilibrium position in a perfect fluid. The
velocity potential @(P,) is known to be the solution of the following boundary
integral equation:
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where G, anf F are respectively the impulsive and memory part of the time
domain Green function G(M,P,t) [Brard (1948), Finkelstein(1957)] which may be
written as: '

GM,P,) = Gy(M,P) 8(t) + H() FIM,P,?) (2) yA
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E being a function of only two variables: a space variable cos6 and a time variable .
As may be seen in the above formula (1), the evaluation of the right hand side of
the integral equation at the current time t requires the calculation of convolution
integrals of the general form:
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IMP,0)= j qM,DFM,P,t-1)dz 3
0

F(MP,) being given from (2), and ¢(M,)) being a known past value of either @ or V.n
on the body surface. In the numerical implementations of (1), the computation of
these right-hand-side terms represents the major part of the required total cpU
time, and necessitates a very large amount of mass storage.

At every time step, the function F must be evaluated for every couple (M.P) of
control points, and must also be stored in order to be reused at the next time step.
From now on, let us choose a couple of fixed point M and P, respectively the source
point and the field point (see fig.1). Let N be the number of control points over the
mean wetted body surface, and k the time subscript varying from 0 to K.

The free surface memory terms like (3) are usually computed using of a discrete

form of t;.‘hxe convolution integral which is then written as :
= k=K

IM,P,1) =1§o qM.t,)FMP,5 ) 8t (4) ,or, in a more compact form : IK=Z Feetr ©)
k=0

In the recent past, the efforts made to accelerate the numerical BEM codes based
on this mode of evaluation of Iy concerned mainly two topics :

- derivation of new alternative expressions of the Green function, better
Esuit:e;l) to numerical calculation (Jami (1982), Newman (1985), Beck & Liapis
1987)),

- tabulation of the memory part of the Green function E(cos8,r) in order to
replace the evaluation of the function F, by a simple interpolation in a table
(Ferrant (1988), Magee & Beck (1989)).

n ARX Model of functi

We propose here an alternative method to compute the RHS terms /k of (1) using a
discrete time model of E(cosd,r). In this method, convolutive series like (5) are
replaced by a simple numerical linear filtering process. This approach, which is
the standard and natural way to proceed in automatic control and system
theories, is not yet widespread in our research community. It has been used
sometimes to modelize the linear and non-linear response of floating structures to
a seaway [Jefferys & al.(1990)-(1991)]. It could be summarized as follows :

A couple of points (M,P) being given, the space parameter cosé is fixed and E
becomes a function of the single time variable t. Let us now consider this couple of
points and the surrounding fluid as a linear system , with an input ¢M.;) and an
output IMpP,). Then, the function E(;) is nothing but the impulse response function
of this linear system. So, under the added assumption that it is time-invariant,
the system may be identified by standard techniques to an ARMAX! discrete time
model. In the present case, the impulse response being given by an analytic form
(2), no perturbation terms need to be included in the model ; then the moving
average terms were dropped out and we retained the ARX model :

i=r 1=s

’x=§5i’x4 +j§'oqul(-b-j (6)

1AutoRegressive Moving Average with eXogenous input.
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where r and s are the orders of the model, and b is an eventual pure delay between
the input and the output. The identification of E(cosd,t) was performed for a set of
equally distant discrete values 6; of the space parameter in the range [0.1,1.0]. For
any given set of orders and delay (r,s,b), an overdetermined linear system was
derived from (5) and (6) and solved in a least mean square sense to determine the

coefficients 8;(cos8;) , w;(cose;) of the corresponding ARX model (6).

(r,s)=(55) | (10,10) | (20,20) | (30,30) The numerical identification
1.0 (21102 [1.0103 | 26105 | 45 10-8 was performed within the
0.8 | 2.010-2 |8.610-3 | 3.010-5 | 3.6 10-9 following parameters domain :
0.6 | 41102 | 12102 | 46105 | 83108 0.1 cos8 <1.0, 0 < © <30, At=0.2 ;
0.4 | 58101 |1.610-1 | 47103 | 2.6 10-4 furthermore, we observed that
0.2 | 86101 | 63101 | 2.010-1 | 1.5 10-2 optimal results were obtained
0.1 | 94101 [8.1101 | 5910-1 | 23101 with : r=s and b=1. Then this
P model structure was retained in

Table 1: € as a function of (r,s) and cos8. all the numerical trials.

Table 1 above shows the mean relative error ¢ between the classical method (5) and
the present ARX model method (6). One can notice that the order must be
increased as cosd tends to zero, which is a consequence of the oscillatory behaviour
of the function E in this limit. This is also the reason why the identification was
not performed in the range 0< cos6 <0.1. ' '
After this preliminary step of identification, which has to be done once for all, the
method was tested on a simple case. A point source of sinusoidal strength
appears at t=0 at the location M(0,0,-1). The potential on the free surface was
computed by both methods (5) and (6) on a radial cut up to Radius=20 and Tmax=40.
On the figure 2 we have plotted the
results obtained by using increasing 025-
order models (r=s = 5, 10,20, 30) as dotted
lines together with the reference
results as a solid line. In that case,
despite the choice of the "worst" value ]
cos® =0.1 for the space parameter, the -025]
(30,30,1) model gave an average relative 1 e —
error of only 3.8 10-2, 0 2 & &£ & 0 2 W ® B 20 2 2¢
Fig2: potential at the free surface cos6 =0.1
In fact, the discrepancy between the two methods remains undistinguishable on
this figure (black dots signal some results obtained by the ARX method, and the
solid line for the reference solution computed by the convolutive form)

Expected benefits of the dicrete time model method,

Let us now evaluate the amount of cpU time and storage volume which can be
saved by using this method in a BEM algorithm based on (1). Let ¥ be the number
of control points over the hull, ¥ the number of time steps, and 0 the number of
discrete values of coséfor which the identification has been performed and stored.
Thus, the calculation of /M,P,g) for the whole body requires:

0.0
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i nvolut | ARX model method

® N(N+1)K @ :mory locations for the| © N(Nr+s+1)+Q(r+s+1) memory locations for
storage of the previous values of ¢ and| the storage of:

of the influence coefficients F(M,P), N2r previous values of I

N(s+1) previous values of ¢

Q(r+s+1) model coefficients,

o N2k evaluations of the function F = 0 (!) evaluation of the memory part F of
the Green function.

= N2K(K-1)/2 multiplications and access| & N2K(r+s+1) multiplications and access to
to the coefficients file. the files,

Thus, the cpu-time reduction factor is roughly k/r for the storage volume and k/4r
for the number of multiplications and file accesses. If the entire simulation dura-
tion is considered, K may be of order 500; so, keeping r=s=30, these ratio are respecti-
vely equal to 16.7 and 4.2 . (or 6.7 and 1.7 if k is the truncation order of the convolu-
tive series, say K=200). Furthermore, the most important gain arises from the total
suppression of the N2k evaluation of F, either by direct calculation or by tabulation.
The gain associated with this improvement is difficult to evaluate a priori. It
depends on the performance of the Green.function routine. In the simple eva-
luation test reported herein, even with a fast evaluation algorithm for the Green
function (Ferrant 1988), the maximum overall reduction gain in cpU time reached
80! The price to pay for this drastic cut in cPu-time requirement and storage
volume is the preliminary identification of E(cos8,7); but one has to keep in mind
that this has to be done once for all.

At the moment, these improvements remain potential. A lot of obstacles remains
to be tided over before implementing the method in a transient seakeeping soft-
ware. First of all, the ARX model must be extended up to cosé =0 in order to cover
the whole possible range of this parameter in realistic calculations. The second
point is the lowering of the model order. We are now devising a new method of
identification in order to address these to points.
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