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As the main source of springing excitation on Tension Leg Platforms, second order wave loads at high
frequency have received increasing attention in both research activities and engineering practice. For the
past ten years, a number of theoretical studies have been devoted to the subject and great progress has
been made in the numerical evaluation of the second order loads. The results published were however
incomplete or controversial. Only recently an excellent agreement of numerical results for a real TLP
from different models {2] [5] has been obtained. The main difficulty lies in the evaluation of the contribu-
tion from the second order velocity potential. As the sum-frequency we are interested in may be as high
as 2.7 rad/sec a large number of panels (nearly 14000) are required to represent the TLP’s hull. Not only
the cost of memory space and computer CPU time become prohibitive, but also the numerical conver-
gence is difficult to obtain. In this paper, the slow convergence of the free surface integral for the high
frequency loads in vertical direction is analysed by modeling a TLP’s column as a truncated vertical
cylinder where a semi-analytical solution is derived. '

There are two ways to evaluate the second order wave loads on large volume structures. The first

~ involves integration of the hydrodynamic pressure over the hull after having solved the second order

problem which is quite complicated as a non-homogeneous condition over the free surface has to be
satisfied (calculation of the second order potential may nowadays be achieved just for bodies of simple
geometry). The second is based on the Haskind integral relation in which the second order loads contri-
buted by the second order potential are completed by the free surface integral (Molin [4]):
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whose integrand is a product of an additional radiation potential y; arising from the body motion in the
Jjth direction, and the quadratic term o,p on the right hand side of the free surface condition for the second
order diffraction problem :
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where ¢; and ¢p are the first order incident and diffraction potentials, and indices ; and ; correspond to
the wave frequencies ®; and ;.

With this integral expression, it is thus possible to get the diffraction loads without explicitly solving the
second order diffraction problem. However, the numerical computation of this free surface integral .is not
simple as op and y; oscillate with a weak attenuation in the radial direction. Of special concemn is the
fact that the infinite integral converges more slowly in the evaluation of the vertical forces for deep water,
and so the truncated radius must be large enough.
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To analyse the convergence rate of the free surface integral, for the sake of simplicity, one TLP column is
assimilated to a truncated vertical cylinder [1]. The wave field around the cylinder can be solved by
Garrett’s method [3] in which the relevant eigen function expansions are used to represent the velocity
potentials in the inner domain limited by the cylinder base and a circular matching surface extended from

the cylinder base to the sea bed, as well as in the outer domain where the first order diffraction potential is
written by : :
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with :
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In above expressions R is the cylinder’s radius, H; and K, are Bessel functions and the coefficients
bb, b4, co and c,, are determined by the matching condition over the surface which separates the inner
and outer domains. The propagating and evanescent wave numbers are defined by :
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Note that the lowest value & of the evanescent modes is between n/2H and n/H.

At the small wave periods that we are interested to, it can be easily shown that the coefficients &%, (m>1)
tend to O (¢ **°) and :
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We obtain the same expression as for a vex;nigal cylinder standing on the sea bed. The first order wave
field is then attenuated in the order of O (e~ 0 )in vertiqal direction. Introducing the equation (3) for ¢p
and the series expression for ¢; into (2), the non-homogeneous term o,p can be written in series expansion
as well :
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where the components o) and o) are the most useful in the free surface integral for heave forces, surge
forces and pitch moments. They tend asymptotically to the order O(1/r) as r—ee. The free surface
integral for the heave forces is written then :
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This integral is semi-analytically integrated and its truncated radius depends largely on the asymptotic
behaviour of the additional heaving potential ys(r) in the radial direction.

In the limiting case of small periods (high frequencies) of oscillzztign for the heaving potential, it is found
that the coefficient cg in the equation (5) is as small as O (e~ 9. The potential field arises from tr}e
heaving oscillation at high frequency is thus dominated by the evanescent components ("local" waves) in
the radial direction : outgoing propagation waves do nc}‘t appear and the attenuation rate is dependent on
Ko (k,.r) which is known to decay in the order of O (e~ ). However, k,, is inversely proportional to the
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waterdepth and therefore the "local” waves in deep water may not be negligible even at a large distance
from the cylinder center.

Figure 1 presents the real part of the heaving potential over the free surface at a sum-frequency
(wy+ wp=2.65 rad/sec) for a vertical circular cylinder of radius R =12.5 m and draft D= 3R. The water .
depth varies from H=1.5D to H=4.0D. As the propagating waves are nearly absent, the imaginary part of
the potential is negligible. At large radial distance, the potential at greater depths is more important than
that for small water depth. The evanescent mode waves are shown to extend much further when the water
depth increases. Consequently, the convergence ratio for heave forces is lower. Comparison with the
convergence ratios for surge forces and pitch moments is shown by figure 2 at different truncated radial
distances. The minimum truncated radial distance derived from the figure is 20 times the cylinder radius
for heave forces while 10 times the radius is sufficient for surge forces or pitch moments. Figure 3
presents the evaluation of the free surface integral values as a function of the truncated radial distance, for
the difference-frequencies varying from ®;— @,=0.0 to ®;— w,= 0.2 rad/sec. It is shown again that the
convergence of the integral for heave forces is slow.

For large volume structures like Tension Leg Platforms, the contnbution to the radiation potential due to
structural pontoons’ heaving motion at high frequency is charactenzed by a locally sharp variation on the
free surface just above pontoons and a small propagating wave component at large radial distance. This
may be explained by the two opposite effects from upper and lower sides of pontoons during heaving
interaction with water. The radiation field at large radial distance pnincipally arises from heaving motion
of columns’ bases. The convergence rate of the free surface integral for TLP's is then quite similar to that
for one vertical cylinder. It is then expected that a much larger truncated radius is needed to obtain accu-
rate evaluation of the vertical forces upon TLP’s.

Finally, figure 4 shows the quadratic transfer functions for heave forces upon a Tension Leg Platform
column, in a series of bichromatic waves defined by the difference-frequency from 0.0 to 0.2 rad/sec. The
heave forces at a given high frequency decrease rapidly when the difference of wave frequencies
increases, due to the cancellation effects in the free surface integral. These effects are shown to be more
important for higher wave frequencies.
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Figure 1 - Radiation potential by heaving motion at
the sum-frequency (w;+®;=2.65 rad/sec) of the

vertical cylinder in different waterdepths

H=1.5D,0—H =2.0D anda—H =4.0D.
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Figure 2 - Ratios of the free surface integral
(w1 +w,=2.65 rad/sec) truncated values at Ry to the
values truncated at 30R: @ — surge forces, o —
heave forces and 4 — pitch moments.
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Figure 3 - Truncated values of the free surface
integral of heave forces at (w;+w,)=2.65 rad/sec
for the vertical cylinder in waterdepth H=4D: g —

(0;—) =0.0,

(0, —-w,) = 0.2 rad/sec.
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Figure 4 - Quadratic transfer function of the heave
forces non-dimensioned by (pgRa;a;) on the verti-

cal cylinder
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DISCUSSION

CLARK: There are some effective algorithms for evaluating the far-field contribution
to the second-order force due to the wave-like components in the free surface integral,
equation (1), (e.g. Kim and Yue). The question is do we need an asymptotic method for
evaluating the wave free (evanescent) contribution in the free surface integral and
what form would it take?

Ref.: M.H Kim and D.K.L. Yue, J.F.M. vol 200, pp 235-264, 1989.

CHEN: The second-order free surface integral (Eq. 1) is usually carried out by dividing
the infinite surface into two regions: the interior and exterior regions. The numerical
quadrature method is applied on the interior region surrounding the body. On the
exterior region, asymptotic expressions of the integrand are used to evaluate the far-
field contribution. For the second-order heave forces at large wave frequencies, it is
shown in this paper that the wave-like contribution is negligible. To calculate the free
surface integral on the interior region, the numerical quadrature algorithm may be the
only way to obtain a good precision for a floating body of arbitrary geometry. It is
possible to formulate asymptotic expressions for the evanescent contribution of the
free surface integral in the case of vertical cylinders, although the exact numerical
integration (Eq. 9) is very fast.
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