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1 Introduction

In this study, the computation of the nonlinear waves generated by a floating body is attempted
using a desingularized method. The method has been successfully applied to several problems involving
submerged bodies or singularities (Cao et al 1990 and Cao 1991). For floating bodies, there are several
additional difficulties associated with the method. The first is the ability of the desingularized method
to handle a discontinuity of the unit normal to the boundary. The second is the difficulty associated
with the conflict of boundary conditions along the intersection of the free surface and the body
surface. The third is the localized wave breaking in the fully nonlinear calculations. As discussed in
the following sections, we are presently examining these problem areas.

2 Formulation and Solution Procedure

The fluid is assumed inviscid and the flow irrotational so that the velocity potential exists. The
kinematic condition on the wetted body surface and the kinematic and dynamic boundary conditions
on the free surface need to be satisfied. An initial value problem starting from rest is assumed so that
a radiation condition is unnecessary. The problem is solved in the time domain by a time stepping
procedure. At each time step, the free surface and body surface positions are known. The potential
on the free surface and the normal velocity on the body surface are also known. Thus, a boundary
value problem (BVP) can be solved to determine the value of the velocity on the free surface and the
potential on the body. Then, the free surface potential and position are updated by time integration
of the free surface kinematic and dynamic boundary conditions. This procedure repeats itself at the
next time step.

The BVP is solved using the desingularized method in which the velocity potential is constructed by
a distribution of isolated sources inside the body and above the free surface. The source strengths are
determined so that the Dirichlet condition on the free surface and the Neumman condition on the body
surface are satisfied at chosen collocation points. To update the free surface position, several numerical
techniques are possible. The first is a Lagrangian approach where the collocation points follow the
same material points whose positions are updated during the whole period of the computation. For
problems with forward speed or large amplitude motions, Lagrangian collocation points can pile up or
penetrate into the hull near the bow region. To avoid this, the collocation points need to be regrided
when necessary and a very small time step may be required. Another approach is to use Eulerian
collocation points which are constrained to move only in the vertical direction. However, the Eulerian
approach requires the numerical spatial derivatives of the wave elevation, which usually results in
large non-physical reflection from the open boundaries. A generalized collocation point approach has
been proposed. In this approach, the horizontal motion of the collocation points are prescribed while
the vertical motion is updated by time stepping. The horizontal motion of the collocation points is
chosen close to the incoming uniform flow so that the errors induced by the numerical evaluation of
the free surface spatial derivatives are greatly reduced. A combined use of Eulerian, Lagrangian and
the generalized collocation points is used in the free surface updating. More details are given in Beck

& Cao (1993).

3 Bodies With Sharp Edges

In the desingularized method, numerical difficulties may occur in the vicinity of the a sharp edge.
One of the difficulties is due to the discontinuity in the unit normal of the surface. The other is that the
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singularity distribution may cross over the centerline or even the body surface on the other side since
the desingularization distance is proportional to the local surface grid size (Cao et al, 1991). Usually,
these types of difficulties can be avoided by careful discretization and desingularization, at times, it
may be necessary to reduce the grid spacing and the desingularization distance (Han et al, 1987 and
Johnston et al, 1984). To examine this problem, we first investigated the flow past a 2-D Karman-
Trefftz airfoil (Milne-Thomsom, 1973) for which the exact solution is known. The Karman-Trefftz
airfoil is a concave section with sharp leading and trailing edges.

Several choices of the discretization (therefore desingularization) were tested. The isolated sin-
gularities were placed inside the body along the normal direction from the surface grid points. The
desingularization distance was proportional to the local grid size. Near the leading and trailing edges,
the desingularization distance was reduced so that the singularities were located on the centerline to
avoid the cross over of the singularities beyond the centerline.

The desingularized method was tested using both uniform and cosine spacing in the longitudinal
direction for the collocation grid on the body. The calculations showed that the cosine spacing was
preferable to the uniform spacing. The results in figures 1 and 2 were computed using cosine spacing.
These figures show the comparisons of the numerical results to the exact solution for the tangential
velocity on body surface. For the results presented in Fig.1, the total velocity at the sharp leading and
trailing edges(stagnation points) was constrained to be zero. As can be seen, the comparison is very
good for most of the body length except near the edges where a spike develops. Fig.2 shows the results
with the collocation points at the stagnation points removed. This eliminated the spikes. Apparently,
the spikes were due to the use of the sharp edges as collocation points where the numerical technique
could not resolve the extreme (jump) change in the unit normal direction. ' :

The method has also been tested with a 3-D double-body Wigley hull and the same conclusion
was drawn: collocation points can not be located at the sharp bow and stern without causing spikes
in the solution.

4 Oscillating Cylinder

Computations have been carried out for a right-circular cylinder of diameter B, bottom depth T,
and with its centerline oriented in the vertical direction. Starting from an initial state of rest at time
t=0, the body is forced to periodically move vertically or horizontally with a velocity

0 t<o0
ut) = { ~wasin(wt) t>0

For these calculations, the position of the free surface was determined using the Lagrangian ap-
proach with regriding as necessary. :

Wave computations for the heave and sway motion of a 2-D box have been done. In the compu-
tations, the intersection points were constrained to move along the body surface. For heave, there
were no apparent difficulties. For large sway motion, the collocation points tended to pile up near
the intersection points and regriding was necessary. Fig. 3 shows the time histories of the free surface
profiles due to the forced heave motion of the 2-D box. The time is increasing from the bottom to the
top of the figure. The comparisons of the added mass and damping coefficients to the linear calculation
and experiments by Vugts (1968) were good. The results for 3-D computations need to be confirmed.

5 Modified Wigley Hull With Forward Speed

The problem of a modified Wigley hull (¢f. Journée, 1992, Modal I) starting from rest and
smoothly accelerating to a constant forward speed is presently being investigated. A coordinate
system moving with the ship is used. The velocity potential is first decomposed into,

O(,t) = Us(t)z + ¢uw(Z,1)
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where U,(t) is the ship speed and ¢,(Z,t) is the disturbed potential field due to the presence of the
ship and the free surface. In our computation, ¢,(Z,t) is constructed as

Ny Ny
$u=3_of GI+3 o Gi
j=1 k=1

where G’j-f and GY are the potentials of the isolated sources above the free surface and inside the body

respectively. ng and o} are the source strengths to be determined by the boundary conditions. The
free surface is updated by a combined use of Eulerian, Lagrangian and generalized collocation points.
Both the body and free surface boundary conditions are forced to be satisfied at the collocation points
along the intersection line. At the upstream edge of the computational domain, the wave elevation
and V¢, are set to zero. Fig. 4 shows the wave generated by the modified Wigley hull for Froude
number F. = 0.214 where the ship has traveled about a distance of 4.5 times its length.

Presently, the computation must be stopped after the hull has traveled approximately half to one
of its length for higher Froude numbers. The problem is at the bow where the water surface has a large
amplitude and very steep slope as a thin sheet rides up the side of the hull. This may be the initial
formation of a spray sheet and breaking bow wave. Physically, this phenomenon can be observed in
model tests and at full scale. The problem is to find a local solution that properly accounts for this
behavior while at the same time not disrupting the computations for the entire domain. This difficulty

only occurs in the fully nonlinear calculations where the free surface position is determined as part of
the solution procedure.
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DISCUSSION

Bertram: How did C,, compare to experiments for the Wigley-hull?

Cao, Lee and Beck: We haven't yet completed the computation for the forces acting on the body
(drag C’w, lift and moment). Since the problem is unsteady, the time derivative of the velocity po-
tential & 3- and the change of the wetted hull surface with time must be taken into account in the
mtegratmn of the pressure on the hull. In addition, there is a problem in computing the pressure
because -é% along the changing intersection line is difficult to compute. An alternative is to exchange
the order of the integration over the wetted hull and the differentiation of the velocity potential in the
force calculation using Lipniz’s rule. The computer code is presently being developed.

Jensen: On the slice where you introduce desingularization it appears that you have a collocation
point at the body-water intersection. Is that true? Do you apply two boundary conditions there?

Cao, Lee and Beck: Yes, we have a collocation point at the body-water intersection and apply two
boundary conditions, the body boundary condition and the free surface Dirichlet condition.

Martin: In Milne-Thomson’s notation, the Karman-Trefftz mapping is

z—-kl _ (17 -1 )k
z2+kl " ‘n+l

where k is a parameter, satisfying 1 < k& < 2; one maps the circle |p| = [/ into the shape shown in

Fig. 1, with corners at z = +kl. What value of k¥ did you use?

For uniform flow in the x-direction, the (complex) velocity near z = +kl, say, is proportional to

(z = k1)

where
O<v<(2-k)/k< 1.

So, unless k£ = 4/3, you do not have a square-root zero at the corner, and so cosine spacing may not
be appropriate. Comment?

Miloh: If I remember correctly the solution for the Karman-Trefftz shape near the corner behaves

like 2%/™, where z = 0 at thé apex and a # 0 is the opening angle. Did you compare your numerical
solution agaist the exact formula (higher derivatives as well)?

For 2-D shapes with sharp corner, one usually can not use a brute-force method (arbitrary spacing)
near the corner and it is preferable to take advantage of this local solution.

Cao, Lee and Beck: We would like to response to Prof. Miloh and Prof. Martin together since
their questions and comments are closely related. We use k£ = 2 — 1/4 = 1.75, which gives an opening

angle of 7/4 at the corner. The flow velocity near the corner behaves like (z — kl)%. We compare
the tangential velocity along the body surface to the exact solution (shown in figures 1 and 2). The
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comparisons for the pressure coefficient are similar to the velocity curves given in Figures 1 and 2. We
didn’t compare the higher derivatives which we were not interested in. Regarding the grid spacing
in the numerical calculation, we agree that the cosine-spacing (or equal-spacing) may not be optimal
(for a general solution behavior, it is not easy to find the optimal grid spacing). In this problem,
however, since the velocity is never singular in the solution, the difficulty for a numerical method
mainly comes from the discontinuity of the surface normal at the corner. The question is whether
and how a numerical method can give a good approximation near the corner. Our tests indicate that
the desingularized method can give good approximations to the solution. The tests have also shown

that whether the stagnation points are used as collocation points or not is more critical than the grid
spacing.

We think Prof. Miloh’s suggestion of taking advantage of the local solution may improve the
performance of a numerical method.
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