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Introduction
At last year Workshop [1], we reported experimental and numerical results related to the
nonlinear propagation of bichromatic wave trains. In particular, we presented numerical

simulations of the propagation of such wave trains using the Sindbad code that simulates
a two-dimensional wave tank [2].

This code uses an "absorbing" beach in order to avoid the reflection of the waves at the
end of the tank. This beach was previously shown to be quite efficient for the absorption
of the wave components to which it is tuned. In fact, the reflection coefficient in that case
is smaller than 2% (in amplitude), a result better than that of most real tanks. During these
simulations for bichromatic waves, however, large amplitude standing waves appeared
for some critical values of the parameters (difference frequency used and length of the
tank). These standing waves interacted with the fundamental components, resulting in an
erroneous evolution of the wave train with the distance from the wavemaker in the critical
conditions. It appeared important to get a better knowledge of the standing waves of the
numerical tank. These were therefore studied analytically in the linear case.

The numerical beach (linear problem)
In the numerical beach, the classical free surface boundary conditions are modified by
adding a restoring term. For the linearized free surface boundary conditions, this yields:

dr+gn-vi(x)¢=0
Ne-¢z-v2x)N=0

where the "damping" coefficients v; (i=1 or 2) are equal to zero outside the numerical
beach (x < xg = L-BA) and to o ® (x-xg)2/A2 in the numerical beach (x 2 xg). A and @
are the wave length and wave frequency to which the beach is tuned. The non-
dimensional parameters ; and P are constant (and usually taken of order 1).

We can therefore write the following free surface boundary condition for ¢:

¢ttv+g¢z+(\’1+\’2)¢t+vl v20=0, forz=h
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Standing waves in the numerical tank
We look for standing waves in the numerical tank by writing

N
o= >:_0 An cosknx gg%gk—k:% exp(iot) ,
n=

where kp = n7/L, h is the depth, and where it is implied that the real part has to be taken.

Such a potential satisfies Laplace equation and all the boundary conditions of the
problem, except the free surface boundary condition.

Writing that this solution satisfies the free surface boundary conditions implies:

(gkm tanhkmh - @?] Ap
L

+=7 T Ap of(im(v1+vz)+v1vz) cosknpx coskpmx dx =0

This leads to the following eigen values problem:
(Bl {A) +iw[C] {A} =w? {A)} (D

where {A} =(Ap, A1, ..., AN) is a complex vector,

an = gkn tanhknh Smn + _2%0111__ JV 1vV2 COSknx COSkmx dx,

L
2-30m

Cmn = I J(vl + Vv3) coskpx coskmx dx.

and Odym=1lifn=m, Sym=0ifn=#m.

The above integrals can be computed analytically and the eigen values problem (1) is
solved in an iterative manner. This yields the shape of the eigen modes and their eigen
frequencies.These frequencies are complex; their imaginary part is of particular interest
since it corresponds to the damping of the mode. In order to check the result, the
resulting mode shape can be used as initial condition in the Sindbad code.
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Example

We consider a tank of depth 1.8 m, we take o =0ty = 1, B =2 and we tune the beach to
a period 1.5 s (0 =4.189 rad/s, A = 3.513 m). We show in the following table the first
two eigen modes of the numerical tank for two different len gths:

L=66m _ L=100m
Frequency rad/s Real part Imaginary part Real part Imaginary part
Mode 1 0.105 1.4 104 0.068 3.8 103
Mode 2 0.315 1.2 10-3 0.205 3.4 104

These numerical values correspond to those of [1] for which the difference frequency of
the excitation was equal to 0.2 rad/s. As that appears in the table, this value is very close
to the second natural frequency of the tank of length 100m. This is, indeed, the critical
length for which an erroneous evolution of the wave train was observed.

A new absorbing beach
Since we are capable of computing the eigen frequencies and the damping of the modes,
it seems interesting to test other numerical damping zones and to check their efficiency for
the damping of long waves.

We now propose a new beach; the principle is to separate the absorbing zone in two
parts: a first part for the absorption of wave components and a second part for the
damping of long waves.

Vi = 0 ® sin[r(x-x0)/2A\) (X0 £ x < xp+A)

Vi=0i® (xp+A <x <L)

As mentioned before, A and ® denote the wave length and the wave frequency to which
the beach is tuned. Since the second zone is a priori devoted to the damping of natural
modes, its length must be important. In return, a large mesh may be used to "lessen the
increase” of computer time.

However, tests of this new beach suggest that the natural modes may be relatively well
damped using a short beach : as example, we consider again a tank 66m long and 1.8m
deep, and we use a beach of total length 6m which is tuned to a period 1.5s. We show in
the following table the first two eigen modes of the tank for two different arrangements
of the o coefficients :
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al1=02=1 a1=0.3, a2=0
Frequency rad/s Real part Imaginary part Real part Imaginary part
Mode 1 0.105 1.1 104 0.111 6.1 10-2
Mode 2 0.316 9.9 104 0.329 5.5 102

The simulation using the linear version of the Sindbad code and taking as initial condition
the second mode corresponding to the case 0.1=0.3,and ¢:2=0 is shown on the figure. As
can be seen, this mode is well damped. An additional simulation was performed in
regular waves (T=1.5s) using the linear version of the code; it was therefore verified that
this beach remained efficient at "short" wave frequencies.

Acknowledgements

This work is the result of research supported partly by DGA/DRET, under contract
n°® 90/1004J. This support is gratefully acknowledged.

References

[1] Boudet, L., and Cointe, R., 1991, "Nonlinear propagation of bichromatic wave
trains," 6th IWWWFB, Woods Hole, Mass.
[2] Cointe, R., 1989, "Quelques aspects de la simulation numérique d'un canal a houle",
These de Doctorat de 'Ecole Nationale des Ponts et Chaussées, Paris. |

secono( mOJe.
0& W\Q e onl'L

(0(‘ = o3 "(fo)

Wavemabey
[ rest)

38

Bmcg\




DISCUSSION

YUE: In anticipation of long (difference-frequency) waves, it appears that you must use

a long beach (the one with the constant v;) — the numerical results you showed had a
length less than one wave length which seems inadequate.

BOUDET & al.: Your question refers to the new beach. Indeed, we were expecting that
it would be necessary to use a second beach of length = one wave length of the long
waves to damp them. However, it appeared (for reasons that are still unclear to us)
that, in the particular case described here, a length equal to the wave length of the
"short waves" was sufficient — at least in the linear case since we did not perform
nonlinear simulations with the new beach yet.
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