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ABSTRACT

Recently there have been attempts to apply the study of dynamical
systems (in particular their period-doubling and chaotic
responses) to ship roll and capsize, and to other floating body
problems such as the motion of a single-point mooring column. A
good introduction is the book by Thompson and Stewart (1986). One
can, of course question the validity of using any model based on
the linearisation of the boundary-value problem for these type
of large responses, but it is probably true to say that
linearised hydrodynamics can be used to indicate the occurrence
of dangerous or unusual motions, even if it cannot accurately
predict their amplitudes. All of these studies have, however,
used the usual added mass (m,) and wave damping (b) concepts in
the equation of motion, which itself may contain nonlinear
restoring and damping terms. We here look at the equation

(m+ my(w))X + pra? Cpx|%| + b(w)X+k;x = Fyypp

in which both m, and b arise from the solution of the steady-
state boundary-value problem of a body oscillating sinusoidally
near a free surface with a frequency-dependent boundary
condition. Hence the added-mass and damping concepts are not
appropiate for any other type of body motion, including
transience, see Maskell and Ursell (1970) for example.
Furthermore with the nonlinear terms damping and bilinear spring
terms (k, takes different values depending on the displacement
direction), the steady-state motion will not be sinusoidal even
in monochromatic steady waves. A further criticism of the use of
the above equation is that the 1limit cycles of the motion
sometimes require a very long time to establish themselves, which
may mean that they would be difficult to realise even in a wave
tank. Since the above equation cannot accurately predict the
transience period, the engineering significance of these limit
cycles is then open to question.

We have replaced the above equation of motion by (see Cumnins
(1962))

t
(m + m (=) )% + pra2Cpx|x| + k;x + fx(t—t):'f(t)dr = Fyirr
0

where the integral term accounts for the system memory which
arises from previous body motion radiating waves; these
consequently affect the present fluid motion and hence body
forces. This memory is accounted for by the impulse response term
which may be calculated as
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K(t-1) =-%{b(w)cos[w(t-r)]dm

As can be see, the kernal depends on all frequencies, which could
be problematlcal for general bodies. For the purposes of
comparison of results from the two equatlons of motion, we take
the simple case of a vertical cylinder moving in sway, for which
the wave damping is known analytically for all frequencies. (An
alternative would be to solve the time-domain boundary-value
problem directly, see eg Newman(1985)). We plan to extend the

study to isolated and interacting truncated cylinders at a later
date.

The figure shows an example of comparisons between the peak-to-
peak velocities and the velocity coordinates of the Poincare
points for the cylinder in waves of a fixed period, as predicted
by the two equations of motion above (the solid/dotted line
indicates results from the equation with/without memory). The
system has viscous damping (Cy=0.7) and alpha = 10 specifies the
ratio of the restoring sprlng constant in either direction. The
axis - labelled eta -~ gives the ratio of the natural (bilinear)
period to the forcing wave period. We see that the two results
agree well for the position and response at eta=1, but are very
different when the body responds with twice the wave period. This
arises largely because we have chosen the wave damping in the
mass-spring system as that at the forcing frequency (no other
choice would be rational).

A fairly complete set of results for the parameter ranges pave
benn calculated and will be presented, as well as a comparison
of the transients predicted by the two equations of motion.
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DISCUSSION

PAWLOWSKTI: To justify somewhat practitioners in this area I would like to mention
that they use added mass and damping coefficient evaluated at the dominant forcing
frequency.

BENNETT & GREENHOW: Yes we do that too! However it is not possible to get the
correct behavior over a wide range of applied springs with a 2nd order ODE whatever
you choose for the added mass and damping.

RAINEY: You have substantial reservations about the constant added mass models
used by Michael Thomson — will this modify his most practically important
conclusion, about the sudden erosion of the basin boundary (e.g. Rayney & Thomson,
JSR, 1991)?

BENNETT & GREENHOW: We haven't looked at this yet. My feeling is that the
sudden erosion will still occur, but almost certainly not at the same forcing amplitude.
The situation for ship capsize may be easier to justify as a 2nd order ODE, since the
damping is largely viscous, not wave damping, in roll, and hence may have less
memory effect. For rig motions I believe memory to be vital for the accurate prediction
of limit cycles and length of transience.
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