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Hydrodynamic Impact of the Water Wave
G.X. Wu
Department of Mechanical Engineering, University College London,
Torrington Place, London WClE 7JE, U.K.

Wave impact is one of the major causes of structure failures in the
ocean and coastal engineering. Cooker and Peregrine (1990) recently
developed a mathematical model to predict the impact pressure based on the
assumption of incompressible flow. Since the velocity of fluid experiences
a finite change in an extremely short period during the impact, one would
intend to expect that the compressibility of the fluid plays an important
role. This leads to the investigation of this work.

We assume that the flow is inviscid. The governing equation may be
written as

-

du -+ -
plgg*+uvu) =-vp (la)
e ) =
3¢ * V-(pu) = 0 (1b)

where p 1is the density, u 1is the velocity and p is the pressure.
Integrating equation (la) with respect to time ¢t and neglecting the
contribution of the second term on the right hand side because the impact
period is extremely short, we have
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where % is the start time of the impact which‘ends at t=t_. We notice the
integration on the right hand side of the equation can be also neglected

upon using equation (1lb). Thus

p(t) (L) - p(ty) Ulty) = - VP 2
where
t
P= j p dt (3)
%

The definition of P here is similar to that by Cooker and Peregrine. The

only difference is the upper limit of the integration here is t instead
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of ta and P is therefore a function of time.

Before the impact it can be assumed that the density is a constant p,

and correspondingly

v.ﬁ(cb) -0

Substituting this and equation (2) into (1lb), we have
2
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where c¢ is the speed of the sound, we obtain the governing equation for P

2
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This is the well known wave equation as we expected to obtain.

We now consider the two dimensional example solved by Cooker and
Peregrine based on incompressible flow: wave impact on a vertical wall. We
define the Cartesian coordinate system O-xy so that x is on the free

surface and y is on the wall. The boundary conditions may be written as

P=20 on y=0 (6a)
3P

3y = 0 on y=h (6b)
P-0 as X-eo (6¢c)

where h is the water depth. On the wall, we assume that the horizontal

velocity as

u(t) = -U,T(t) (7)

within the impact zone -b<y<0 as named by Cooker and Peregrine. Here T(t)
is a fucntion reflecting the change of the velocity with T(tb)-l and
T(ta)-O, which allows the flexibility of the wall and any air possibly
trapped during the impact. Using equations (2) and (4), we have

3P

3= = Yo [ p(E) T(E) - po]
- U, (X %% T(t) + polT(t)-1]) on x=0, -b<y<0 (6d)
o

In general, the solution of above equation can be written as
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P(x,y) = nglfn(x,t) sin(Any) (8)
where
62f 32f
2 2 2
L 2“ -cA £
at ax non (9a)
2 Of af 204U,

2
c a.x_“ + U, ﬁ T(t) = - > e [T(t)-1] [l-cos(A B)], on x=0 (9b)

N

A, = (n+ );‘—1 (9¢)

and fn*O, as x~»o, We know that
af af

n
ae - 9(c 3%

Thus the second term of the left hand side of equation (9b) can be
neglected if U, <<c which is the case in many hydrodynamic problems.
Equation (9b) may be approximated as

af

n
Fralie v(t), on x=0 (10)

which is exact if T(t)=0, where V(t) 1is the right hand side of equation
2
(9b) without ¢ .

Upon performing the Laplace transform of equation (9a) with respect to

time, we obtain

% 2 2 2 2
£ (x,s)= -V(s)exp{-x/[(s/c) +An])/[(s/c) +An]

where the initial conditions.f(x,tb)-af(x,tb)/at-p with tb-O and the
boundary conditions in equation (10) and at infinity have been used. Thus
with r being a positive real

r+iew

£ 1

n 2xi A(s) eXP("X/[(s/c)2+A;]+sc) ds

r-iw

- o Jt v(t-r) f
2ni 0

2 2
r+io  exp{-x/[(s/c) +An]+sr}
ds dr

73
r-iw JI(s/¢c) +An]
t
- -C J vV(t-7) Jo[An/(czrz-xz)] dr (11)
x/c

where the last equation is obtained by wusing the result in Erdelyi
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(1954, Vol.l, pp.248). When c+» and T(t)=0 for t>0, the above equation
reduces to

T
fn - -2p°U°[l-cos(Anb)]/(«\nh) E m—; JO(AnT) dr

2
- -2p°Uo[1-cos(Anb)]/(Anh) exp(~Anx)

as obtained by Cooker and Peregrine for the incompressible flow, where
eq.6.554 of Gradshteyn and Ryzhik (1963) has been used.

Our major concern here is the impact pressure on the wall. Cooker and
Peregrine wused an emperical equation ppk-ZP/At to calculate the peak
pressure ppk' since in their formulation P is not a function of time. By
differentiating equation (3) and making use of (8) and (1l1), we are not
only able to calculate the peak pressure but also the history of the

impact pressure. Further discussions will be presented in the workshop.
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Yue: I understand from your abstract that ¢ is the ‘normal’ speed of sound in water (and you
mentioned ¢ = 1500 m/s in your presentation) rather than some reduced speed due to the presence
of bubbles. Furthermore, you spoke of the problem of Cooker & Peregrine (1990) as a motivation
for this work. I find it hard to imagine that for breaking wave impact problems, acoustic pressures
associated with ¢ can be involved. Would you comment on this?

Wu: We hydrodynamicists have become used to Laplace’s equation, and there is a tendency to
take for granted what we have neglected. One of the conclusions of incompressible flow is that
any disturbance in the fluid will be immediately felt by the entire fluid domain. In reality, the
disturbance is transmitted by compressing the fluid and travels at the speed of sound ¢. Thus the
effect of c is always important near the front of acoustic waves. For hydrodynamic problems, we are
mainly concerned with a region surrounding the disturbance and the effect of ¢ can be neglected.
In the inner region, it will only be a matter of seconds before we can we can assume that the entire
fluid domain has felt the disturbance. For impact problems, on the other hand, with a time scale
measured in milliseconds, the disturbance will only have traveled a few meters. Thus we expect
that for some geometries, the effect of ¢ will be important. My work was initially motivated by that
of Peregrine & Cooker but Equation (15) is for general purpose. The case considered by Peregrine
& Cooker is used as an example to support the above argument. For this particular case, the effect
of ¢ on the peak pressure is important and its effect on f;‘ pdt will diminish like 0(7(-:7-)?) if ety

is large.

Cooker: It is interesting to include compressibility but I think one must consider the change of ¢
with distance from the wall. Near the wall a bubble concentration of 50% can make ¢ = 20 m/s,
while ¢ = 1500 m/s far away. Shock waves/sound waves will strongly refract in such a non-uniform
medium.

Wu: As mentioned in reply to Yue’s question, equation (15) is for general purpose. The problem
of impact on a vertical wall is treated as an example. For this particular case, the variation of ¢
may also be important. My paper is nevertheless to draw the attention of hydrodynamicists to
the seemingly forgotten effect of ¢. If ¢ is only 20 m/s in some cases, its effect will be even more
important, which further supports my argument.

Palm: The left-hand side in your equation of sound is very large. What about the right-hand
side: c is very large, can you see anything about the order of the V? operation? (i.e. the horizontal

length scale)

Wu: We may write equation (5) as ;1-,-9;;5’1 = V3P . Here the very large ¢ will be balanced by
very large %"—f-’- which is due to P experiencing a finite change within an extremely short period.
To investigate the importance of the effect of C, for a particular case I agree that we should relate
the length scale ct with that of the body and of the fluid domain as I discussed in my reply to Yue.

Tulin: (i) I do remember that acoustic pressures (pcu) were measured on flat nosed bodies impact-
ing on flat wakes (laboratory), but they were of extremely small duration with negligible impulse.
(ii) In modeling wave impact, I would worry about the presence of clouds of small bubbles in the
zone of high pressure not far beneath the free surface. The high pressures seem localized, and
within the order of milliseconds a cloud of small bubbles could collapse and further increase the
pressure there.

Wu: (i) It is difficult to comment without knowing how the experiment was conducted and what
was really measured. But my stubborn intuition tells me that the compressibility will be important
for a flat plate entering the water at large speed. (ii) Indeed, not only the bubbles will occur, but
water will splash in all directions. This is certainly not a topic of continuum mechanics. How can
we include these effects? The answer cannot be easier, I do not know!
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