On the Impulsive Motion of a Wavemaker

E.F.G. van Daalen

Introduction

In fluid mechanics, the problem of float-

ing moving bodies in gravity waves has

received much attention in the past few

decades. In many cases both analysis and

computations encounter difficulties near

the intersection of a body with the free

surface. In recent publications, nonlinear

transient waves induced by the movement

of a wall have been the subject of exten-

sive study. It is known that in case of
an impulsive start analytical solutions be-

come singular at the intersection of the

wall with the free surface. Mathemati-

cally, this singularity is due to a conflu-

ence of the boundary conditions. Physi-
cally, the singularity is plausible in view

of the splashing which occurs in the slam-

ming of a ship.

In this paper we focus our attention to
the impulsive motion of a wavemaker and
the fluid motion as a result of it. Usually,
the problem is reduced to two dimensions
and a velocity potential is introduced un-
der the assumptions of potential flow the-
ory. Analytical solutions can then be ob-
tained by using small time expansions for
both the velocity potential and the free
surface elevation. Such approaches can be
found in (3, 5, 7], revealing a logarithmic
singularity in the free surface elevation.
However, the lowest order solution for the
potential does not match the initial condi-
tion. Another approach suggested in [4, 8]
is to use small amplitude or small Froude
number expansions. This leads to solu-
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tions showing (nonphysical) wiggles nea-
the intersection point, which vanish if sur-
face tension is added.

A computer program has been devel-
oped jointly by MARIN, Delft Hydraulics
and the University of Twente for the nu-
merical simulation of 2D nonlinear grav-
ity waves. It is based on a 3D higher or-
der panel method developed by Romate
(9]. The program is capable of simulating
highly nonlinear waves, overturning waves
and interactions of waves with fixed struc-
tures. - Numerical results on these cases
have been described in (1, 2]. It is for the
occurrence of the above mentioned singu-
larities in relatively simple problems, tha:
we have found it beneficial to test the pro-
gram on these items first, before we pro-
ceed to the implementation of a numerical
scheme for the 2D simulation of nonlineax
wave-body interactions. Our results will
be compared with those obtained by Lin
(5] and with the analytical solutions from
the small time expansions.

Mathematical Formulation

Under the assumption that the fluid is
ideal, the irrotational fluid flow is deter-
mined by Laplace’s equation for the veloc-
ity potential and by the nonlinear dynamiz
and kinematic boundary conditions at the
free surface. The field equation is trans-
formed to a boundary integral equation,
based on Green’s identity. Higher orde:
approximations for the variables of inter-
est are used, and each collocation point is
situated in the middle of its panel. Substi-




tuting the potential for Dirichlet bound-
aries (such as the free surface) and its
normal derivative for Neumann bound-
aries (such as a wavemaker) yields a sys-
tem of linear equations, which is solved
by either Gaussian elimination or the Pre-
conditioned Conjugate Gradients Squared
Method. Finally, the time stepping is per-
formed by either the classical fourth or-
der Runge-Kutta method or a fourth order
mixed Runge-Kutta/Taylor method.
Following the earlier work of Whitham
(10}, we have taken some effort in formu-
lating the problem in terms of a variational
principle for the associated Lagrangian
functional L. The field equation and the
free surface conditions are easily obtained
from appropriate variations in L. In addi-
tion it was found that for well-posedness
of the problem, a Lagrangian description
should be used for the free surface.

Problem Description and
Analytical Solutions

As shown in figure 1, the piston wave-
maker is a vertical rigid boundary, and
the origin of the coordinate system {z, y}
is initially located at the intersection of
the wavemaker and the free surface. At
time ¢t = 0, the wavemaker starts to move
impulsively in horizontal direction with a
constant velocity U = 1 towards the fluid.

Due to the impulsive motion of the
wavemaker, the free surface is changed
from its undisturbed level at y = 0 to a
new position at y = n(z, t). The kinematic
and dynamic boundary conditions on the
free surface read:

¢y = M+ PN , (1)
b = ~3(V6-V)-gn. (2)

At the bottom the vertical velocity must
vanish and at the vertical wavemaker the
horizontal velocity is equal to 1.
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Next, we expand the velocity potential
and the vertical deviation of the free sur-
face in power series of t:

p(z,y,t) = i on (z,¥)t" (3)

n=0

o

n(z,t) =Y na(z)t" . (4)
n=(

The leading-order solution @y(z,y) is ob-

tained straightforward by the Fourier-

series method (see [5]). Substituting

z = 0, we obtain an expression for the po-

tential along the wavemaker at ¢t = 0*:

4 ry/2
T
b0 09) = % [ togtan(F+3)] a0
0
8G -
- ‘;r'é" ’ (3)

where G is Catalan’s constant. The lowest
order nontrivial term in the free surface
elevation is given by (see [5]).

m(z):—%log[tanh(’—rf)] . (6)

Numerical Results

As indicated before, the wavemaker starts
to move from a state of rest with a con-
stant horizontal velocity U = 1. At

t = 07, the velocity is a step function and
as a consequence the acceleration is infi-
nite. The length of the tank is 10, the wa-
ter depth is 1 and the time is from 0 to 0.2.
Comparative tests with a tank length of 20
show that during this time interval there is
no reflection from the vertical wall down-
stream. The boundary integral equation
is solved using a wide range of elements
on the boundary (N = 66,132,264). The
number of panels on the wavemaker in
these tests is 8, 16 and 32 respectively.
Cosine spacing is used in order to obtain
a dense grid near the intersection point.




Note that in our method no collocation
point is situated at the intersection.

First we compare our results for the dis-
tribution of the potential on the wave-
maker at ¢ = 0% with the analytical so-
lution (5) and with the results obtained
by Lin’s model according to Vinje and
Brevig [5]. Figure 2a shows the results
obtained by Lin with constant and co-
sine spacing, where the intersection point
(which is a collocation point in his model)
satisfies the wavemaker condition only. It
is clear that even with cosine spacing there
is still a significant error near the intersec-
tion point. Figure 2b shows the improve-
ment obtained if the intersection point
is forced to satisfy both the wavemaker
and the free surface conditions. Figure 3a
shows our results, where the position of
the intersection point is calculated from
extrapolations from the collocation points
on the adjacent boundaries. From figure
3b, showing the results close to the inter-
section point, it is clear that even with
the smallest number of elements (/N = 8)
on the wavemaker, excellent agreement
with the analytical solution is obtained (a
straight line connects the results for N = 8
in this plot).

Figures 4a and 4b show the quality of
our method in predicting the free surface
elevation due to the impulsive start of the
wavemaker. Altogether these results give
us a firm confidence in the future capabil-
ity of our programs (2D and 3D) in sim-
ulating ship motions in nonlinear gravity
waves.
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Cao: Would you say something about the preconditioning technique that you used?

van Daalen & Huijsmans: I assume that you refer to the Preconditioned Gradients Squared
Method we used as a matrix system solver. This is a method developed by Kaasschieter (Delft
University, The Netherlands) and it is especially convenient for sparse systems. In our case, where
we have a full system matrix, the method still works very well. I am not familiar with the details
of the method, but I know that it is described in a journal on numerical algorithms. A briefer
description can be found in Romate’s Ph.D. Thesis (1989) from the University of Twente.
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