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1. Introduction

We present preliminary results for the numerical simulation of the fully-nonlinear interactions
between the vortex sheet shed by a surface-piercing moving body and the free surface above it in
two-dimensional, inviscid flow. Historically, vortex dynamics studies have been applied primarily
to aerodynamic and hydrodynamic problems without free surfaces. It is only in recent years that
there is increasing attention on the important and fundamental problem of free surface and vortex
interactions. Such phenomena have important implications to the operation of lifting surfaces such
as keels or control fins near the free surface, and to the wave resistance and free-surface disturbances
that may be created. To simplify the problem, we focus our attention on a body with a sharp edge
for which a simple model for vortex generation can be used.

The initial-boundary-value problem for the vortex/free surface simulation is solved using a
mixed- Eulerian- Lagrangian approach (e.g., Longuet-Higgins & Cokelet 1976; Vinje & Brevig 1981).
It is known that this approach suffers from numerical instabilities such as saw-tooth oscillations
on the free surface and irregular motions of the vortex sheet, which arise from either computa-
tional errors or ill-posedness of the problem. There have been numerous efforts, such as smoothing
(Longuet-Higgins & Cokelet 1976), rediscretization (Fink & Soh 1974) and regularization methods
(Chorin & Bernard 1973), to modify or stabilize the numerical scheme. These stabilizing techniques
in effect introduce damping into the dynamical system, or a filter which suppresses the unstable
modes. A common criticism of all these techniques is that the precise relationship between the
computational results and the ‘exact’ solution and ultimately the actual physical problem is unclear.
Our view is that with the limitations of the mathematical formulation in representing the physical
model, and with the complexity of the physical system itself, there is much to be gained by accu-
rate simulation and quantification of the global features despite the (inevitable) use of stabilizing
techniques. (The alternative of adopting full viscous free-surface codes is prohibitive in most cases.)
We are especially encouraged by the promising results of Vinje & Brevig (1981) for simulation of
nonlinear free surface motions, and by Faltinsen & Pettersen (1982) for vortex sheet tracing. The
numerical procedures adopted in the present simulation are primarily generalizations and extensions
of these two works.

2. Formulation

We consider as a canonical problaru the abrupt starting from rest to horizontal velocity U of an
tufinitzsimally thin vertical surface piercing strut of subusergenece h. The free shear layer iv assumed
to be confined in an infinitesimal vortex sheet. Significantly, for deep water, this problem is governed
by only one parameter, the Froude number F, = U//gh. In the following, length and time units
are chosen so that A, g=1.

The computational domain is enclosed by imposing periodic boundary conditions on the up-
stream (z = £/2) and downstream (z = -{/2) vertical boundaries. The contour of the domain
consists of the free surface (Cy), the plate with fluid on one side (C,), the submerged portion of
plate (C,) and the vortex sheet (C,). Since the complex potential 3(z,t) = ¢ + i3 is analytical
inside the fluid domain, Cauchy integral theorem gives for each time instant ¢:

ﬂ(zk,t)=;}; ][ ﬁ(z,t)K(Z;Zk)dH;}; / (2, )1 K (; 2x)dz + i2Beo(t); (1)
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when z; € Cf and Cp, and

B t) = 5+ g [ B OKGa)s+ g f (8(e 0K (s 2 + Bunte (2
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when z; € C, and C\; where [¢(z,t)] = ¢* — ¢~ is the potential jump across C, and C,, the kernel
function K(z; z) = (x /) cot[(x/L)(z~ zi)], and S (t) is a complex constant resulting from contour
integration along z = [-{/2 - i00,{/2 — i)

Taking the imaginary and real parts of (1) for zx € C; and C,, respectively, we obtain second-
kind Fredholm integral equations for 4 on Cy and ¢ on Cp. The imaginary part of (2) when z; € C,
gives first-kind integral equations for the potential jump [¢] on C,. The mixed first- and second-
kinds integral equations are solved by approximating the contour by piecewise-linear segments and
piecewise-linear distributions of 8 and [¢] along the segments. For the second-kind integral equations,
the collocating points z; are on the nodes of the line segments. For the first-kind equations, z are
placed at the midpoints of the segments. Following Lin (1984), we specify the known 3 at both upper
(Cs U Cp) and lower (C; U Cp U C,) intersection points. In order to obtain two extra equations for
the complex constant, B (t), we also collocate at the upper intersection point and at the midpoint
of the segment above the lower intersection point.

The evolution of the free surface positions { and potentials ¢((,t) are updated by integrating
in time the kinematic and dynamic free surface boundary conditions:

Dz . D 1, 1
-E-t-zw, and 5‘?:5101” ""'1"52"(: (3’4)

where the complex velocities w(z,t) = dB(z,t)/dz are calculated using three-point Lagrange formu-
lae. The velocity at the intersection points are obtained by differentiating the values of 8 at nodes
on the plate next to the intersection points. The vortex sheet is a material surface and is convected
according to

D 1 -
-b—;.-.-.-i(w"'-i-w ). (5)

At the tip of the plate where the vortex sheet sheds out, Bernoulli equation gives the rate of shedding
of potential jump as

D 1, _ - .

%?:ﬂw v -wtwt), (6)
where the velocities w* are calculated using the values of 3% at the midpoints of segments on the
submerged plate next to the separation point. The time integrations of (3-6) are carried out by a
fourth-order Runge-Kutia scherue. The initial conditions at t = G are specified with che free surface
quiescent (¢ == 0 and ¢ = 0) and - starting point vortex shed out according to the similarity solution
(e.g., Graham, 1983).

3. Numerical implementation and results

Figures 1 and 2 show typical computational results for F,, =1.0 and 1.5. The length of the
periodic domain ¢ is 4.0, and the time step for Runge-Kutta integration is 0.005.

Because of the large deformation of the free surface, we use an adaptive rediscretizing algorithm
to control the maximum length of the line segments. The typical length of segments on the free
surface is 0.05. We also use a three-point smoothing formula (Longuet-Higgins & Cokelet 1976) to
suppress the growth of saw-tooth instabilities on the free surface. Due to the impulsive motion of
the plate, the free surface on the forward side of the plate behaves like a jet (cf., Lin 1984). The
upper intersection point shoots up quickly and a thin film forms along the upper part of the plate.
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To avoid difficulties associated with simulating a very thin film on the plate, the portion of the film
with thickness less than 2% of the length of a plate segment is eliminated and a new intersection
point specified. In contrast to the free surface near the upper intersection point on the forward side
of the plate, the lee side of the free surface intersects the plate at a large contact angle. For F, = 1.5
the lower intersection point moves downward continuously and the free surface will eventually sluice
from the lower tip of the plate. For F,, = 1.0 the lower intersection moves downward asymptotically
to a steady depth. For even lower Froude numbers, the solutions (not presented here) are again
qualitatively different.

In order to resolve the initial roll-up of the vortex sheet, a new shear layer segment is shed out
continuously at each time step up tot = 1.0. To limit the number of spiral turns in the roll-up region
of the vortex sheet, the inner portion of the spiral is amalgamated into a point vortex. Application
of amalgamation is found to have only negligible effects on the motions outside the outermost turn
of the spiral. As time proceeds, the vortex sheet quickly rolls up into a spiral and grows in size.
For the present numerical implementation, smooth roll-up of the vortex sheet can not be achieved
without applying rediscretization on the vortex sheet.

The rolled-up vortex sheet continuously grows and eventually interacts strongly with the free
surface, e.g, for ¢ > 1.5 in the figures. The free surface pushes back the vortex spiral and causes a
stretch of the vortex sheet between the roll-up and the separation point (in sharp contrast to the rigid
free surface, F,=0, case.) At this stage, the rate of vortex shedding decreases to a small value and
the lengths of new shear layer segments shed at the separation point become very short. To avoid
instabilities associated with such short vortex segments, we control the length of the segment shed at
the separation point by amalgamating new segments into one until it reaches a given length (0.02 for
the results shown). We also found that the vortex sheet suffers Kelvin-Helmholtz instabilities which
are in fine scale compared to the global features. Following Moore (1981), we apply a smoothing
formula to the position of the vortex sheet. Our computational experience shows that the five-point
smoothing formula is more effective than the three-point formula in delaying the growth of the
instability.

The interaction between the free surface and vortex sheet becomes stronger as they approach
each other, e.g., for t = 2.0 and 2.5 in the figures show. Our computational results show that
qualitatively different classes of interactions can result depending on the Froude number. A sys-
tematic numerical study varying the Froude number is underway which should lead to a complete
understanding and quantification of the underlying mechanisms.
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Faltinsen: In our experience, we have always thought it essential to require that the free shear
layer leave the body surface tangentially. Otherwise there will, theoretically, not be any shed
vorticity. In your model it does not seem to be the case that the free shear layer leaves the body
surface tangentially.

Tsai & Yue: We do use Maskew’s Kutta condition at the separation point and the shear layer is,
in fact, shed tangentially at the tip of to the plate.

van Daalen: (1) How often do you need the adaptive rediscretization algorithm to control the
maximum length of the line segments (Section 3)? (2) What is the impact of the five-point smooth-
ing formula that you use to suppress the growth of instabilities on the free surface and do they
occur on both sides of the plate? (3) Do the computations actually break down due to the thin
film on the right side of the plate, and if so, can this be avoided by choosing a smaller time step?

Tsai & Yue: We rediscretize the free surface and vortex sheet at every time step for the results
shown in the abstract. The regridding scheme is based on an equal-segment redistribution algo-
rithm. We have also developed and used a new adaptive redistribution algorithm which employs
a smoothing spline with curvature as the regridding mesh function. In this way, we avoid having
to use the five-point smoothing formula to suppress the growth of saw-tooth instabilities. Using a
small time step can only delay the thin film from moving across the plate, some form of truncation
of the spray tip appears inevitable.

Clement: Would you explain why you place collocation points at the node for a 2nd kind Fredholm
equation, and at the midpoints of the segments for a 1st kind equation? Did you check the condition
number of the matrix to motivate this choice?

Tsai & Yue: Yes, we calculated the condition number of the coefficient matrix, and found that
the matrix becomes very singular if collocation points are placed either only on nodes or only on
midpoints for these mixed first- and second-kind Fredholm integral equations.
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