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1. Introduction

The physics of wave impact such as those of plunging breakers on ocean structures are
little understood because of the presence of strong nonlinearities and complicated effects of
trapped air. Chan & Melville (1988) present careful measurements of plunging wave pres-
sure on a vertical wall and show that the peak impact pressure is very high (O(3 ~ 10) pC?,
where p is the density of water, and C is the characteristic phase velocity). The impact
pressure and its oscillation frequency are significantly different between repeated experi-
ments, and is also very sensitive to the wall location relative to the plunging wave. Despite
the importance of impact loads, quantitative predictions based on direct computations are
so far scarce, and in particular a useful scaling law has yet to be found. Vinje & Brevig
(1981) performed some numerical calculations of impact pressure due to a breaking wave
without trapped air. Dommermuth, Yue, et al (1988) performed a numerical simulation
of a deep-water plunging breaker which compared extremely well to experiment.

Following these works, we focus here on the impact process itself. Our primary ob-
jective is to calculate the wave impact pressure with air trapping and compare it to the
experiments of Chan & Melville (1988). In order to make a stable calculation, a robust
computational method is now under development. In this abstract, we present the math-
ematical formulation and some new ideas in the numerical method.

2. Mathematical formulation

The physical problem is formulated as the irrotational flow of a homogeneous, incom-
pressible, and inviscid fluid in a two dimensional rectangular tank with a piston wavemaker
at one end. The sketch is shown in Fig.1. Here, dimensionless variables are used so that
the depth of fluid in the tank, density of fluid, and gravitational acceleration are set to
unity. We define the complex potential 8(z,t)=¢(z,t) + i9(z,t), where z=z + iy, ¢ is the
velocity potential and 4 the stream function. Since the velocity potential and stream func-
tion are solutions to Laplace’s equation in the fluid domain, Cauchy’s integral theorem can
be applied. As in Dommermuth, et al (1988), mirror images with respect to the bottom
are added to reduce the number of unknowns. The governing equation is:

amiB((,t) = /C [ﬂ(”t)_ Bzt ], (1)
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where C = Br U BR U F and ()* denotes complex conjugate. If we now let ¢ approach C,
Fredholm integral equations of the second kind for ¢ on F and v on B can be obtained
and the system solved. Eq.(1) is also valid when f is replaced by any analytic function,
such as §3/08t. In practice it is useful to solve the boundary-value problem for both 4 and
0B/8t, because we can calculate impact pressure directly from the solution of 83 /8t and
Bernoulli’s equation.

On the wall and wavemaker, 9 and /8t are specified as boundary conditions. We
fix the stream function value on Bp and Bp;:

Pp=1h=0 on Bp, Br; (2)
where (°) denotes time derivative. The stream function and its time derivative on the

wavemaker are given by

Y=U(t)(y+1) on By (3)

$=U(t)y+1) on By

where U(t) is the prescribed velocity of the wavemaker. On Bp,, the stream function is
given in a similar way.

On the free surface, ¢ and 8¢/0t are given. The kinematic and dynamic boundary
conditions are respectively

l%;-:%@z—- on F1 and Fz (4)
D¢ _ 8¢ |98|" _ 1|88
—5?=-5?-£_ =-2--é—€— -y ~p on F1 311sz (5)

where D/Dt is the material derivative, and p is the atmospheric pressure on F; and the
trapped air pressure on F,. The velocity potential ¢ and the position of the free surface is
calculated by integrating (4) and (5) in time. In order to get the new values of 8¢/0¢,
must be solved first and d¢/8t is obtained upon substitution into (5).

For the mathematical model of the trapped air, either an aero-static or aero-dynamic
model can be considered. For simplicity, we choose the static model as a first try. Such a
model involves three simplifying assumptions: (i) the process of trapped air compression
is adiabatic; (ii) there are no shock waves in the trapped air and the pressure is uniform
(i.e., (pu?)air € (Pu?)water; and (iii) there is no leakage of air and no formation of foam.
With these assumptions, the model of trapped air is described simply by a polytropic gas
law: pvY = constant , where v is the volume of the trapped air and 7 is a physical constant
equal to 1.4 for air.

3. Numerical technique

For a successful simulation of the impact process, special treatments such as regridding
and smoothing are indispensable to remove high-wavenumber instabilities and maintain
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appropriate panel sizes. Unfortunately, most of these treatments involve certain amount of
trial and error to achieve optimal results. To reduce such trial and error and to maximize
the robustness of the calculations, we develop a new adaptive automatic regridding and
smoothing method. This method is constructed in two stages. The first stage is fitting
and smoothing. The second stage is regridding.

As a fitting and smoothing function, we use smoothing cubic splines. These functions
act as both fitting and smoothing functions at the same time. Let a knot sequence X =
{z0,2;,....;Zx} and real numbers yo,y1,....,yn be given. The basic idea of the smoothing
spline is to find the fitting function f which minimize the functional

KaA(f) = J(f) + Ex(f) (6)

with weights A = [Xo, A1, ...., An], where Ex(f) is sum of square error and J(f) is the total
strain-energy of the spline function:

E\(f) = D Al f(=5) — v5)? )

§=0

Tn
10)= [ e @

Zo
The key point is finding the optimal A for our purpose.

As a regridding function, we can use the idea of a mesh function introduced by Hy-
man & Naughton (1985). The mesh function is defined as that which measures the local
goodness of the discrete approximation on the mesh. If a curve fitting function is obtained,
we can define the mesh function as a function of arc length, curvature, etc. Fig.2 shows
an example of the generated mesh on a spiral curve. In this example, curvature is utilized
as a mesh function.

4. Results

Preliminary results using adaptive automatic regridding and smoothing will be pre-
sented. Application to the plunging wave slamming problem and comparisons to the
experiments of Chan & Melville (1988) will be discussed.
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Fig.1 Sketch of wave impact,
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Fig.2 An example of generated grid.
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R.W. Yeung: At the moment the first fluid particle comes into contact with the wall, this fluid
particle has only a single value of velocity. Can you explain in more detail how you “split” this

velocity up into two separate values, one upwards and the other downwards, corresponding to those
of two fluid particles?

Tanizawa & Yue: At the first instant a single Lagrangian point crosses the wall, a truncation
is performed and two new points on the wall are obtained by interpolation. Since dynamic time
stepping is employed for the entire simulation (typically At < .14 /Vemaz, Where £,.; is the size
of the smallest panel, and V,,,, the maximum velocity of the Lagrangian points), the portions
which are truncated are constrained to be a small fraction of the local panel dimensions.

Clement: (1) In your simulations, you may reach situations where the free-surface and the vertical
wall make a very sharp angle. Did you check the precision of your numerical method in such cases
by simulating numerically a known given potential? (2) What is the criteria you adopt to cut (or
not to cut) the jet along the wall?

Tanizawa & Yue: (1) Yes, we did. By considering the solution in a triangular domain of height 1
and decreasing the base width down to 10~%, we were able to confirm that the error in the ‘vertical
velocity’ at the apex is less than about 1% even for the worst case. (2) We adopt a criterion in
terms of the minimum jet thickness relative to local panel sizes (which are kept approximately
constant). A typical value for cutting the splash tip is 0.2% of panel size. This criterion gives us
excellent resolution of the details of the splash and the free surface near the impact zone. For such
thin spray jets, however, the stable evaluation of the wall pressure near the tips becomes a difficult
task.
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