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Introduction

Second-order wave effects are important to the dynamics of a certain type of offshore structures
and marine vessels. They are known to excite the resonant motions of the structures whose natural
frequencies are designed to lie outside the spectral range of wave incounter. The high frequency
vertical plane resonance of the TLP and the low frequency large amplitude oscillation of compliant
floating structures are the well known examples. In the past decade numerous research efforts
devoted to the analysis and computation of second-order wave effects. Recently we developed a
numerical method and extended the first order panel code (Korsmeyer et al (1988)) for the com-
putation of complete second order sum and difference-frequency wave forces on the arbitrary three
dimensional bodies in the presence of bichromatic and bidirectional waves. Detailed description of
the second-order extension can be found in Lee et al (1991). Much efforts are directed to the robust
and efficient evaluation of slowly convergent free-surface integral associated with the free-surface
boundary condition.

Formulation

With the assumptions of a potential flow and weak nonlinearity, the velocity potential &(x,t)
and resultant force F can be expanded in terms of first-order linear components and second-order
components. Here x is a fixed Cartesian coordinate system, and ¢ denotes time. Unlike its first-
order counterpart the boundary value problem for second-order potential is characterized by an
inhomogeneous free surface boundary condition, invelving quadratic products of the linear veloc-
ity potential and its spatial derivatives. In the presence of two incident waves of frequencies w;
and w; the second-order potential, which results from the quadratic interaction among first-order
quantities, is given by
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Here (+) and (—) denote sum and difference-frequency components, respecively. A similar decom-
position applies to the resultant force and we define the second-order force in the form

FO)(1) = Re JJ Yo {Ffestesk 4 Fyefeivsny @)
Two separate components contribute to F;; as

F; = Fr +l‘1 (3)
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where F, is due to the #() and F, is due to the quadratic interactions of the linear potential $(*),
Numerical method
¢ Quadratic force

For the diffraction problem there are no body motions, and the second-order force F, takes the
relatively simple form

1 -
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Here p is the fluid density, g is gravity, n is the normal vector, ( is the first-order runup and WL
represents the waterline.

Robust evaluation of the first-order velocity V&) is essential to the reliable computation of (4).
For this reason, the source-base formulation is used to evaluate the gradient in (4). (The advantage
of the source formulation in this context is that the gradient of the source distribution requires only
first derivatives of the Green function, whereas in the potential formulation second derivatives result
from the gradient of the normal dipoles.) In addition special care is devoted to the discretization
near the corners with a nonuniform spacing of the panels according to the ‘cosine-spacing’ formula
or a similar scheme.

¢ Second order potential force

Indirect method which does not require the second-order potential explicitly is adopted in the
computation of second-order potential force in consideration of the compatibility of the architecture
of the second order code with that of the first-order code. The second-order force F, is given by

F, = —ipwt / L .(¢,n - ¢Q£T’)ds —ipw / /s ! qr $dS. - (5)

where ¢; and 4 are second-order incident velocity potential and assisting potential. The free-surface
forcing is denoted by qr.

The second integral over the free surface Sp is the most difficult and computationally dominant
task. For the efficient evaluation of this integral, the free surface Sp is divided in two parts,
separated by a ‘partition’ circle of radius b which is sufficiently large to enclose the body and its
local disturbance.

In the inner region between the body and the partition circle the free surface is discretized into
quadrilateral panels to permit the free-surface integral to be evaluated by quadratures from the
value of the integrand at each panel centroid. Terms in gp containing second derivatives with
respect to z cause numerical problems in the vicinity of the body waterlines. To avoid this, an
alternative formulation involving only first-order spatial derivatives is used. Details can be found
in Kim (1990). |

In the outer region of the free surface (r > b) both the assisting potential and the first-order
potentials can be expanded in Fourier-Bessel series. After integrating the trigonometric functions
with respect to the angular coordinate the free-surface integrals are reduced to summations of
integrals (with respect to the radial coordinate r) of the form

/,’ = Co(kir)Cm (ki 7)Cn (kar)rdr (6)
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Here the functions C, denote Hankel functions of the first or second kind (H.(,"’) ), and Bessel func-
tions of the first kind (J, ). The arguments of these functions are proportional to the wavenumbers
(ki, k;) corresponding to the first-order frequencies w;,w;, as well as the wavenumber k; of the
second-order potential or assisting potential. The neglected evanescent terms are local and decay
exponentially to the radial direction in a fluid of finite depth. For large values of /h, where h is
the depth the evanescent modes are proportional to the factor exp(—C'r/h) where x/2<C <.
If the partition radius is substantially larger than the fluid depth the resulting error is extremely
small. On the other hand, in the infinite-depth limit the evanescent modes decay algebraically in
proportion to (kr)~2 on the free surface.

Special care is required to evaluate the radial integrals (6) in a robust manner for the relevant
combinations of the wavenumbers and orders ({,m,n). The maximum value of orders ¢, m,n
depends on the wavenumbers, body dimension and the partition radius. For the sum-frequency
results presented, it is necessary to include orders up to a maximum value between 16 and 32. The
method used for the evaluation of (6) is based on adaptive numerical integration in the complex
plane, ultimately along a semi-infinite path parallel to the imaginary axis where the integrand decays
exponentially with monotonic asymptotic form. Romberg quadratures are used for each of the
required integrals, with a specified absolute error tolerance (generally 10-2). Effective evaluation of
the integrand (the Bessel and Hankel functions) is important in this method. For each combination
of frequencies the total number of integrals (6) evaluated is 0(1000), but the resulting computational
burden is negligible compared to the numerical integration required for inner region of the free
surface.

Numerical results and Disscusion

Computation was made for the wave loads on the single and four cylinders and ISSC TLP. The
dominant effects of the second-order potential force to the vertical force and pitch moments at
the sum-frequency are illustrated in the Figure. It is also found that second-order forces are
much effected by multi-body interaction effects. In Table the comparison of second-order forces is
shown between deep and shollow water as the partion radius changed. It is found that free-surface
discretization is critical, particularly for the sum-frequency vertical force in deep water.
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Table - Convergence o1 the second-order potential forces with increasing partition radius.

112m
4928

789
7.28

11.52
14.09

s.63
14.46
1212

0.53
7.00
9.46

1.88
10.70
16.91

0.67
13.49
18.38

120m

798
128
3.95
12.07
pIAL
3.78
1464
1228

1.05
.41

1089
1691

13.61
16.44

140m
9728

234
8.05
125
.99
12.11
14.17
3.82
14.60
12.32

117
9.31

1.98
11.10
16.80

0.34
13.78
16.42

160m
13568

238
“lz
121
4.05
12.21
14.20

3.8
14.64
12.87

0.72
T2
9.24
2.01
1119
16.70
0.28
13.81
16.33

180m
17888

8.15
7.28

12.20
14.22

391
12.43
0.77

9.19
2.05
11.24
16.61
0.28
13.01
16.29

200m
22688

2.40
8.15
728

4.08
12.27
14.22

392
14.64
12.43

0.80
728
9.14
2.09
1.27
16.55
0.31
13.80
16.23

Upper half « “iatic is icr a depth of 40m, and lower half is for a depth of 450m.
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Sebastiani: We developed a similar procedure, which we presented at the last IUTAM Symposium.
We also encountered the numerical difficulties of calculating double derivatives on the free surface, as
well as, integrals of triple products of Bessel functions in the outer domain. In order not to increase
the number of integrals, we directly computed the double derivatives using a low order panel
method. We found the application of Romberg quadrature to the Bessel integrals troublesome, and
preferred to use the asymptotic expansion of the Bessel functions. This leads to Fourier integrals
which are easily evaluated.

Lee: Using a low order panel method the double spacial derivative can not be evaluated accurately
(even approximately) close to the body surface, especially when the field point approaches the
panel edge as required in the free surface integral near the waterline in the inner domain. The free
surface integral can be converted, by applying the divergence theorem, into an integral involving
only first order derivatives and by employing a source formulation this integral is evaluated accu-
rately. The additional line integral along the waterline and the partition circle resulting from the
divergence theorem can be evaluated with very small additional effort. In the outer domain, we
didn’t encounter any trouble in applying adaptive Romberg quadrature in the complex plane. Us-
ing the asymptotic expansion of the Hankel function may be complicated since the expansion is not
uniform and the number of terms in the expansion depends on the order of the Hankel function as
well as the partition radius. The numerical effort associated with the Romberg quadrature turned
out to be very small compared to that of the 2D surface integral in the inner domain.

Molin: I refer to your table showing the convergence of the free surface integral with increasing
radius of the partition circle. Do you have any explanation for the decrease in the heave force with
increasing radius in the case ka = 1.22,h = 450, whereas the other forces increase? (From my
experience it always increases at large wave numbers where the evanescent modes dominate).

Lee: I do not have an explanation for the decreasing value of the heave force. It is not clear to
me why the force should vary monotonically with the increasing partition radius. It may depend
not only on the magnitude but also on the phase of the free surface integral. In the table, for this
particular frequency, the heave force happens to be very small compared to the other forces. Due
to cancellation error, it may not represent a typical (correct) trend of heave forces especially for
large partition radius. '
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