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Summary

A new analysis method is provided for the added resistance, steady sway force, and yaw moment
acting on an advancing ship in oblique waves. The method is based on the principle of linear and
angular momentum conservation, but instead of using the stationary-phase method, the method
utilizes Parseval’s theorem in the Fourier-transform theory. Calculation formulas for the steady
sway force and yaw moment are obtained in a form involving only the Kochin function. With
the unified slender-ship theory, numerical computations are also performed for the diffraction
problem and compared with experiments.

Asymptotic form of the velocity potential and its Fourier transform

As shown in Fig. 1, we consider a ship advancing at constant forward velocity U into a
plane progressive wave of amplitude a, circular frequency wo, and wavenumber ko = wi/g, with
g the gravitational acceleration. The angle of wave incidence is denoted by x, with x = 0
corresponding to the following wave. Due to the incident wave, the ship performs sinusoidal
oscillations about its mean position with the circular frequency of encounter w = wo —koU cos x.

The assumptions of the linearity and the inviscid flow with irrotational motion permits us
to write the velocity potential in the form
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Eq.(3) is the incident-wave potential and ¢ in (2) the disturbance potential due to the presence
of a ship, consisting of the scattered and radiation potentials.

Using Green’s theorem and an asymptotic form of the Green function expressed in a form
of the inverse Fourier transform, we can obtain the far-field approximation of ¢ valid at large
distances from the z-axis:
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Here H*(k) in (4) is the Kochin function and can be written as

HE(k) = C(k) £ iex S(k) (8)

C(k) /‘/“ (__ —y ) v Hike cos(nv/ v? — k2) ©
5(k) on on sin(nvv2 - k2)

The upper or lower of the complex signs appearing in (4) and (8) is to be taken according as
the sign of y is positive or negative, respectively.

From (4), we can readily obtain the Fourier transform of the disturbance potential in the
following form, with u(2? — k?) being the unit step function:

where

F{o(z,9,2)} = e A (k) u(i? = %) s FiaVi=F (10)

The Fourier transform of the incident-wave potential ¢ takes the form
F{po(z,y, 2)} = 216(k — ko cos x) e~Foz—tkoysinx (11)
where 6(k — ko cos x) is Dirac’s delta function, thus contributing only for k = ko cos x.

Calculation formulas for the steady force and moment

Let us consider the rate of change of linear and angular momentum within the finid domain
bounded by the ship’s hull Sg, the free surface Sr, and a control surface Sc at a large distance
from the ship. Taking account of that there is no flux across Sy and S, the pressure is zero
on Sp, and the fluid motion is periodic, the steady force in the z-y plane, F and the moment
about the z-axis, M, are given by

i"-_—_/ [pn+pVé(Vé-n — Uny)] dS (12)
Sc

_ ___//S [p(r xn); + p{(x X V§), + yU} (V¢ -n — Un;)] dS (13)

where p is the fluid pressure given by Bernoulli’s equation, p the fluid density, n the normal
vector pointing out of the fluid domain, r the position vector, and the subscript z or 2 denotes
the z- or z-component of vector quantities, respectively. The overbar im (12) and (13) means
taking time average.

Instead of a circular cylinder of large radius about the z-axis, we take two flat plates as the
control surface, which are, as shown in Fig. 1, located at y = £Y and extend from z = —oo to
£ = +00 and from the instantaneous free surface down to z = +00. It should be emphasized that
all the disturbance waves radiating away from the z-axis are precisely incladed in the asymptotic
form of ¢, (4). Thus neglected are only the contributions from the local waves near the z-axis;
these will become zero at z = *o0 in the 3-D case.

Note that n, = 0 on the present control surface. Then considering the added resistance as

an example, we have from (12) and (2)
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where the asterisk denotes the complex conjugate and [ ]¥,, means the difference between
values of the quantity in brackets at y=Y and y = -Y.

The integrations with respect to z in (14) can be easily performed with Fourier transforms,
(10) and (11), and Parseval’s theorem expressed by

[ 1@r @i =g [~ Fec® (15)

The z-integrations in (14) will be analytically carried out, because ¢ and ¢o have simple depen-
dences on the coordinate 2z as seen in (10) and (11).
The results obtained in the above manner can be summarized as follows:
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Here H(ko,X) is the function obtained after substituting k = kocosyx and V2 — k2?2 =
kosin x into the Kochin function H*(k), C'(k)and S'(k) may be given by analytical differen-
tiations of (9), and C'(ko,x) + ¢ S'(ko, X) is defined in the same way as H(ko, X).

Applying the foregoing procedure to the energy-conservation principle in order to recast
the second term on the right-hand side of (16), we can show with relative ease that eq. (16) is
identical to Maruo’s added-resistance formula [1]. Egs. (17) and (18) are the results obtained for
the first time by the present analysis. It is noteworthy that deriving (18) may be intractable as
long as we follow Maruo’s analysis using the stationary-phase method. In the limit of vanishing
forward speed, the above formulas recover Newman’s results [3] on the drift force and moment.

Numerical examples

Computations were performed for the diffraction problem, using the unified slender-ship
theory [2] to determine the scattered potential ¢ and the Kochin function. Fig. 2 shows the
steady sway force on a half-immersed prolate spheroid of beam-to-length ratio B/L = 1/6, in
oblique waves of x = 135°. At U = 0, the unified-theory results agree well with independent
results by a 3-D panel method. The results for Fn = 0.15 indicate that forward-speed effects
are small; but this is not the case for the added resistance and steady yaw moment. Fig. 3is a
comparison of computed and measured profile of diffraction wave at y = 0.4L, generated by a
prolate spheroid of B/L = 1/5 moving in head waves (/L = 1.0, Fn = 0.2); the bow of ship
model is located at z = 0. Except near the ship, good agreement can be observed, implying
that the Kochin function and thus the steady force and yaw moment predicted by the unified
slender-ship theory will be relatively accurate. Further computations are now in progress and
their results will be presented in the foreseeable future.
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Sebastiani: Did you try to apply your formulation to the vertical plane forces which are of great
interest for high speed catamarans and SWATH vessels?

Kashiwagi: No I didn’t, but I think that it is possible. However, we should note that the basic
equation for the vertical steady force will be different in form from eq.(12). Even if we restrict
ourselves to the wave-induced linear forces and resulting motions of a catamaran with forward
velocity, we have no reliable and reasonable theory. Thus, before proceeding to the steady vertical
force on a catamaran, there are several linear problems which need to be resolved.
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