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1 Introduction

Given the location and the diffraction/radiation characteristics of each member of a
floating-body assembly, the hydrodynamic interactions among the members can be ac-
counted for exactly within the linear potential theory([1].

In this paper we now consider an inverse hydrodynamic interaction problem. That is,
given the diffraction/radiation characteristics of each member of a floating-body assembly,
what the locations of the members should be in order that, say, the wave force on the
assembly is minimized.

The most naive way to accomplish this purpose is to calculate the wave force while
changing the locations of the bodies systematically and identify the minimum point in
the contour curves(surfaces) of the corresponding force. This is, however, inefficient and
practically impossible when the number of bodies is not small.

On the other hand, in the field of structural design of large structures such as ships the
nonlinear programming techniques have been in common use to solve such inverse problems
in which certain effectiveness functions related to the structures are optimized.

Combining these conventional nonlinear programming techniques and the hydrodynamic
interaction theory of Kagemoto and Yue[l], we show that the inverse hydrodynamic inter-
action problems can be solved efficiently.

2 Theory

We consider an array of N floating bodies in plane progressing waves under the usual

assumption of the linearized potential theory.
According to the theory of Kagemoto and Yue[1] the velocity potenital ® that represents
the wave field around each member (say body-j) of the floating-body array is expressed as

N
¢ ={Bj(@;+ Y. Ty 4} ¥; (1)
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where ¢ = §R(¢;e“‘“") and 1/;; is the vector of cylindrical partial waves of HY and K n- @
and A; are the vectors of amplitudes of each partial wave modes of the plane incident wave
and the addtional incident waves due to the interactions among the bodies respectively.
Bj is the ”diffraction transfer matnx” for body-j. The superscript T indicates that the
transverse should be taken.

Once the velocity potential that represents the flow field around each member is deter-
mined, the hydrodynamic force F on the whole assembly acting in # direction is calculated
as

F= Z//cwpgﬁ ngdS; = Ezwp(a + Z ATTU)B //g(;’ngds 2)

1=1(i#5)
Now we consider the following inverse problem. That is, what should the locations of
the bodies be if you want the hydrodynamic force F to be minimal ?
Let zx(k = 1,2,---, K') be the variables that determine the locations of the bodies. zj
can be the coordinate of each body or the distance & the relative angle between two bodies

of the assembly.
Then the necessary condition for F to be minimal is

a
5 F=0 (k=12-1K) (3)

From Eq.(2)

i

5 F = pr[——kah E {(—-:AT)T +AT( ~T;5)} By / / PingdS; (4)

i=1(3#y)
Here the derivative of a vector or a matrix with respect to z; means that every component
of the corresponding vector or matrix is differentiated with zj.
Since the components of @; and Tjj are given explicitly in zx(k = 1,2,---, K), the differ-
entiation of G;, Tj; can be carried out analytically. On the other hand, 4; and 3 A are
determined numerically by the theory of Kagemoto and Yuefl].

After obtaining these derivatives we can solve Eq.(3) by the conventional nonlinear
programming techniques. Since the derivatives with respect to zx(k = 1,2,--, K') can be
calculated from Eq.(4), the descent method of Fletcher and Powell[2] can be used.

In practice, inverse problems usually entail certain addtional restraints on z},s (otherwise
the problems often end up with some trivial solutions). The additional restraints usually
encountered are categorized into the following two equations.

h[(21,$2,"‘,$}{)=0 (£=1)2”"aL) (5)

Cm(zlyz%“';zl()zo (m=]:2)""M) (6)
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In order to incorporate these restraints into our inverse hydrodynamic interaction theory,
we follow the method of Carroll[3] and define the following function f and search for
Zx(= (£1,%2,---,Tx)7) that makes the function f, instead of F, to a minimum.

M L
= 1 ~1/2 2=
f=F+ rm§_1 AR l§=1 hy(Zx) (7

where r is a certain very small positive real number.

In the procedure for the search of I, we start with certain initial values of Z; such that
cm($x) > 0(m = 1,2,.--, M), then c,,(Zx) can not become negative because as ¢, (Zx)
approaches zero the second term of Eq.(7) blows up and thus assures that Eq.(6) is fulfilled.
Similarly, simce r is a very small positive number, even a tiny deviation of hy(Z;) from zero
makes the third term of Eq.(7) blow up and therefore Eq.(5) is assured to be satisfied.
In this way the minimization of f ensures that c,(Zx) > 0,ki(Zx) = 0. Moreover, the
minimum value of f is almost the same as that of F as far as k(%) is zero and r is very
small.

The detailed procedures of how to search Z; that minimize f are well established and can
be found in many literatures.

3 An example problem

We applied the theory of Section 2 to an array composed of two rows of four-cylinder
arrays shown in Fig.1(diameter:0.5m, draft:0.5m, water depth:1.0m) and identified the con-
figuration of the array for which the horizontal drift force F, is minimal in head seas (at
waveperiod T=1.15 sec.). (The theory described in Section 2 can be readily extended to
the minimization of drift forces.) The length L and the width B of the array are assumed
to be fixed as 3.0m and 1.5m respectively. The waveperiod(T=1.15 sec.) was chosen be-
cause the drift force is the largest for an equally-spaced array(¢; = {3 = €3 = 1.0m) at this
waveperiod.

As shown in Fig.2 there exist three minima and which one is identified depends on the
initial values of Z;, which in this case are {3, &3, £3. The points identified by the present
inverse theory are indicated by the symbol ‘+' in Fig.2. Among the three minima the drift
force is the smallest at No.3 point and the corresponding configuration of the array is de-
picted in Fig.3. The frequency response characteristics of F, acting on the corresponding
array is shown in Fig.4 with the comparison to F, of the equally-spaced array.
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.Fig.4 The {requency response characteristics of F; . |
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