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INTRODUCTION

The intricate shapes of the present floating platforms have motivated a lot of effort for
the improvement of the numerical methods within the well established potential theory. In this
context, any analytical improvement such as the one proposed here is welcomed. Going directly
to the point, it is known é)Wehausen 71) that for the calculation of the radiation damping and
the horizontal mean drift forces, there are expressions that require azimuthal integrations of
products of Kochin functions. It seems that these integrations have been performed numerically
and this introduces an extra error to be controlled and requires unnecessary evaluations of the
Kochin functions for intermediate azimuthal angles. However, inverting some sign of
integrations, it is possible to express the azimuthal integrations in closed form. This, of course,
improves precision and the speed of calculations.

BASIC EXPRESSIONS
Keeping in mind linear theory, the pertinent Kochin function may be expressed as
(Wehausen 71): ‘
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where k is the wave number, 8 is the azimuthal angle, SB is the mean body wetted surface, h is
the water depth, ? is the complex velocity potential corresponding the unit amplitude body
motion in direction j (j = 1,2,3,4,5,6) and

D = tgh(kh) + kh sechz(kh) (a constant). .
By energy conservation, it can be shown that the radiation damping (Bij) may be

expressed as
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(Wehausen 71) (* indicates complex conjugate).

By momentum conservation it is possible to express the mean drift horizontal forces (Fx

and Fy) and moments (Kz) as (see Wehausen 71 and references there cited)
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(x and y are on the horizontal plane and 2 is vertical) where
p(s) = —LEE_ (6)
and since the total velocity potential may be decomposed as

-67-




<pt-¢> +¢7+§ ;95 (N

where P corresponds to the incoming wave of ampiltude A, Aga to the scattering and ¢. to

the radla.tlon (r; 1s the displacement in generalized direction j) then !

B(0) = £ 18,00 ®)
AZIMUTHAL INTEGRATION
Introducing now
L. -I H(&)H (0)d0 (9)
it possible to show (Fernandes and Levy 90) that (observe the integration over Sgin (1))
1= (o {5 J 5Ty (10)

where P = (x,y z) e Q= (x',y ,2') are pomts on the body and T. (P Q) does not depend on 4
and may be expressed as

T (P Q) = coshk(z-+h) _coshk(z' +h)fa(P) (Q)I(P Q) +

coshkh coshkh
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where aj(P) = 0 ‘g : ;(>P) kN3(P)<,oj(P)
Ny(P) = tghk(z+h) ng(P)
oi(P) =ik (Pp(P) o(P) = ikng(P)yy(P)

With p = (¢ + )1/ 2 f = x—x' ; 9 = y—y' the I's in expression (11) may be expressed in terms
of Bessel functlons J, B 17988 'defined in Abramowitz and Stegun 72) such that
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p
Hence, with (12)—(17) for any two pomts on Sg, one may calculate T, (P Q) via (11)
and perform the integration shown in (10) in order to calculate B Note that the precision now
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is the same as the one imposed by the body description.
For the mean drift forces the procedure is analogous From (3), (4) and (5)

= _57(_}11 {'}1 %0; [cosﬁI )] (18)
_5;.“1 f; 7, [senﬁl —ISJ] (19)
R, = _g,_ m($, 8, nritg) + L2041 ne(n(s)) (20)
where 1§j 2 j Hi(ﬂ)Hj(a)cosﬁde (21)
Bo= [ H(0H(6)sendds (22)

y-, v

d 2x %
Iijgf H,(9)D;(6)ds (28)
which leads to
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with the expression for T‘i:j(P,Q) [TfJ(P,Q)] following from (11) by taking the I"© [I"s] instead
of I"". The expression for Tcilj(P,Q) is more complicated and given by
T4(p,Q) = 2shk(zth) °2§§§§;’+") {o(P)E(QPE(P.Q) + o(P)E (QI(P.Q)
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where
Op. 8.
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;aj.‘s(P) = ik ng ¢;(P); ﬂjC(P) =ikn) ¢,(P) and ﬁ}”(P) = ik (xn) — yno)p(P).

The remaining I functions are given by
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PE(P,Q) = 2 (H){-[H(Eg)Qlﬁé;p—)—kn(ég)iép—)} (31)
SIMPLE APPLICATIONS

_ The expressions above are easily programmable from any code that calculate the
velocity potential ?5 3=1,2,...7 at points though the body. This has been done for the present

work from a code developed by Levy 89. As examples of applications two classical cases are
considered: the MacCamy and Fuchs slender vertical cylinder (see for instance Chakrabarti 84
and the hemisphere as discussed in Kokkinowrachos 82 both with radius a. In the Figures 1 an
2 the mean drift horizontal force are presented respectively.
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Fig. 1 Mean drift force, cylinder (h/a.zszl Fig. 2 Mean drift force, hemisphere
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Yue: You treat integrals of periodic functions given (presumably) discrete data. It seems that com-

putationally you cannot hope to do better than equal spacing quadratures which gives exponential
convergence. Do I misunderstand your objective?

Fernandes: I guess you do. It is difficult to find a quadrature that is better than an analytical,
closed-form result when the latter is made up of simple functions such as Bessel’s.

Ohkusu: You did not mention the merits of your method in terms of practical applications and
the accuracy of numerical computations. I wonder if you could give any specific examples.

Fernandes: I cannot give you a direct answer to that question because I have never tried the
quadrature approach. Certainly the formula will improve the precision up to the precision of the
calculation of the Bessel functions. But I am not sure about speed since it depends on the stategy
used for implementation of the formula.
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