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1) Introduction

This work concerns the enormous and short-lived pressures exerted by a
breaking wave when it meets a solid surface. The pressures may endure for only a
millisecond but are usually 10 or 100 times greater than the hydrostatic
pressure component. We have investigated the simplest problem: wave impact on a
fixed vertical wall, though the work may give insight into wave-body impact,
such as the slamming of ship hulls in heavy seas.

At the last Workshop we showed preliminary results of boundary-integral
computations of irrotational waves meeting a vertical wall (Peregrine and
Cooker, 1990). We found that if the wave face has a vertical tangent when it
reaches the wall then the fluid, in the neighbourhood of the waterline, can
achieve accelerations erceeding 1000g. There are correspondingly large vertical
pressure gradients and pressures, just below the waterline. These high transient
accelerations appear to be the key to understanding the "shock™ pressures
measured by experimenters since the pioneering work of Bagnold (1939).

Here we make a comparison between the computations and recent labora-
tory measurements by Arami and Hattori (1989) (abbreviated to A&H) who examined
waves about 10cm high. For those examples where the fluid motion is too violent
to compute accurately, we supplement the numerical results with pressure impulse
theory, a model first presented at the last Workshop (see Cooker and Peregrine,
1990). The pressure impulse is defined by

ta
P = | pxot) at (1

To

where p is the pressure; t, , ta. are the times just before and after impact. For
an incompressible fluid, P is harmonic and VP = p(uv - ua)-,where up and ua. are
the fluid velocity fields just before and after impact. We assume that p is a
triangular hat function in time between the instants t, and ta., and we define
the impact time at = ta - tn , so that from (1) the peak pressure is given by

Pex(x) % 2P(x)/at. (2)
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2) Results

Figure 1 shows boundary-integral computations of a wave of height 3.21h
moving against a vertical wall on a still water depth, h. (Units are chosen so
that h = g = p = 1.) The wave height matches that recorded on video by A&H. The
waterline accelerates vertically with a speed vy = 20 (ygh) and an acceleration
of 4000 (g). Large pressures accompany this acceleration as can be seen from
figure 2. In this example the numerical method could not resolve the violent
surface motion, and the computations halted. At the last time computed the
maximum pressure is 44.5 (pgh) and still rising.

We now use the computed horizontal speed, wave height, and waterline
position as "initial" conditions (at time t,) for pressure impulse theory.
Figure 3a shows how at is equated with the time it would take the waterline to
rise to the same level as the top of the wave (with initial speed v, and under
constant vertical acceleration a,). Figure 3b is the idealized boundary-value
problem for the pressure impulse and its Fourier series solution is given in the
caption. The maximum peak pressures found from three calculations and three
measurements of A&H, are shown in Table 1. The spread of values is similar and
shows the sensitivity of results to initial conditions (in this case the imitial
wall-wave distance and initial wave slope).

TABLE 1. Impact time At and peak pressure ppx compared. H is the total height
of water at the wall, U, is impact speed and x is the fraction of wall struck.

.............. Computations............evvuveeeeeneen.. ----Experiments (A&H)--
Case  H(m) Us (m/s) L At (ms) prpx (kPa) ot (ms) pri (kPa)
IV 0.126 1.52 0.300 1.344 48.58 1.5 36.7
XI 0.126 1.39 0.169 1.227 28.62 3.2 27.2
XIv  0.126 1.52 0.181 1.329 28.9 3.0 14.5

Further comparisons between theory, computations and experiments will
be presented. A full preliminary report is in Passoni, Cooker, Peregrine (1990).
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Figure 1): Computed free-surface profiles for a wave of height 3.21h meeting a
vertical wall at x = 0. Times 0 [0.5] 1.5, 1.9 [0.01] 1.94 . SWL is at y =0,
with uniform depth, h =1. Waterline acceleration is 4017g and vertical velocity
is 204/(gh) at the last computed time, (still increasing). At t = 0 the wave has
approximately a tanh profile centred at x = 5.4 with a uniform flow to the left
at X = +x. In the absence of the wall the wave overturns.
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Figure 2): Instantaneous pressure contours at t = 1.94 for the wave of figure 1.

The maximum pressure is 44.5 pgh, located just below the waterline.
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k= ay/(ah + hsu)

Figure 3a): Sketch of numerical solution at last time computed. These are the
"before impact" conditions (t = tw) for pressure impulse theory. Impact time at
= time it would take the waterline to rise to the level of the wave height
(3.21h) with the initial speed and constant acceleration given by the numerical

solution. U, is the horizontal impact speed, p the fraction of wall struck.
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Figure 3b): Boundary-value problem for pressure impulse, P, corresponding to
figure 3a. P(x,Y) = 20U.H 2 a2 (cos phn -1) sin (AY/H) exp (-Axx/H),

where An = (n - #)7 , and 23;'80, -HeY <O .
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Yue: I have a comment regarding the experimental result from Chan & Melville (1988) that you
showed. They actually reported oscillations in the pressure signal which they were able to correlate
with the reverberation time of the air pocket volume they estimated; thus providing evidence for
the importance of trapped air. (They had intended to, and were successful in, obtaining plunging
breaking waves with a fairly distinct overhang of the wave jet.)

Cooker: Pressure oscillations may well be due to the presence of the pressure of an air pocket
trapped against the wall, or due to the vibration of bubbles formed by the air pocket once the
pocket has broken up. I think that an air pocket will reduce the peak pressure. Recent work by
Arami & Hattori (1989) reports experiments in which the highest peak pressures were brought
about the least air entrapment against the wall. The message from this paper is that “impact”
pressures can be generated without air entrapment and without even any direct collision between
the free surface and the wall.

Grue: The question regards the integrated pressure on the wall. How much larger is the integrated
impact pressure than the corresponding result obtained by linearized theory?

Cooker: Using our boundary integral method we have computed horizontal forces on the wall
which exceed 20pgh?, where h is the still water depth. This compares with a typical linear wave
theory force of %pgh2 So impact forces are many times greater than hydrostatic pressure loads.
Pressure impulse theory (for an appropriate choice of impact duration) also gives a horizontal
thrust on the wall which is many times greater than hydrostatic.
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