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There are currently worldwide interest in developing high-speed vessels for
transportation of passengers and goods in open ocean areas. Normal operating
speeds will correspond to Froude numbers larger than 0.6. In this report a
numerical method to evaluate motions of a high-speed non-planing vessel is
described. We will concentrate on monohulls. However the method may be

generalized to multihulls,

Linear theory

Consider a vessel at high forward speed in regular sinusoidal waves. The
incident waves can have an arbitrary propagation direction relative to the
vessel. The water depth is infinite and the free surface is infinite in all
directions. The motions of the body and the fluid is assumed to be small so
that we can linearize the body boundary conditions and the free surface
condition. The problem is formulated in terms of potential flow theory. The
total velocity potential ¢ will be written as

t

¢ = Ux + ¢>s(x,y,z) + ¢1(x,y,2) e'¥ (1)

where U is the forward speed of the vessel, Ux + ¢g is the steady potential,
w is the circular frequency of encounter, t is the time variable, i is the
complex unit and ¢1ei“t is the unsteady potential which is linear with
respect to the incident wave amplitudes. We will approximate the boundary
value problems for ¢g and ¢ in the same way as Faltinsen (1983) did for bow
flow around a ship. The consequense of this is that the near-field solutions
of ¢g and ¢ satisfy a two-dimensional Laplace equation in a cross-sectional
plane of the vessel. The linear body boundary conditions and free surface
conditions are kept in their original form. This means the free surface con-
ditions are the classical free surface conditions with forward speed. Only
"divergent” wave system are accounted for. At the aft end of the ship genera-
1ized Kutta-conditions are set up both for ships with transom sterns and

ships with a clearly defined trailing edge.

The steady and unsteady forces and moments on the vessel are obtained by pro-

perly integrating the pressure. The damping coefficients Bjj are checked by




deriving a formula based on conservation of energy in the fluid. The formula

uses similar approximations that are made in formulating the boundary value
problem.

The velocity potential was found by the solution procedure used by Faltinsen
(1983). For each cross-sectional plane along the hull Green's second iden-
tity was used to represent the velocity potentials in terms of a distribution
of fundamental two-dimensional sources and dipoles over a closed surface con-
taining the body surface, the free surface and a control surface far away.
The free surface conditions were used to step the solution from the bow to

the aft end of the vessel.

It has been demonstrated that the results converge by increasing number of
elements on the body surface, free surface and number of strips. The numeri-
cal results have been compared with numerical and analytical results for
linear transient motions of a circular cylinder, results given by Tuck (1988)
for the wave resistance of a parabolic strut and results given by Chapman
(1975) for the added mass and damping coefficients of a flat plate
oscillating in sway. The damping coefficients were checked by energy
relations. The steady wave elevation around a Wigley hull was compared with
complete linear three-dimensional methods for Froude number > 0.4. The
agreement for all tests are generally satisfactory. The results demonstrate
that it is reasonable to neglect the effect of the transverse wave systems at
large Froude number both for the steady and unsteady problem. Further it is
shown that conventional strip theories for ship motions are inadequate for

high Froude numbers.

It has been demonstrated that use of very small elements near the intersec-
tion of the body and the free surface may create numerical problems. One
reason to this may be locally high oscillatory behaviour of the velocity
potential. This can be demonstrated by analysing the free surface elevation
in front of a plate that at time t < 0 has zero velocity and at time t 2 0
has a constant transverse velocity U = Ug (see Fig. 1). The analytical solu-
tion has been derived by Roberts (1987). The numerical results have been
obtained by replacing 3/3t with U 3/3x in the steady free surface condition.
We note that the analytical solution has a highly oscillatory behaviour in
the vicinity of the plate. By keeping very small elements on the free sur-
face we are able to capture some of the local behaviour. However, it will be

impossible by assuming constant variation of the velocity potential and nor-
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mal velocity over each element to simulate the highly oscillatory behaviour.
This will require infinite number of elements. A different approach would be
to use a local analytical solution form in the numerical code. However, it is
difficult to know this analytical solution form in a general case. On the
other hand our inability to simulate the local highly oscillatory behaviour
very close to the plate does not significantly influence the quality of our

numerical predictions at a small distance away from the flat plate.

Nonlinear theory

Keuning (1988) has measured distribution of hydrodynamic forces along a ship
that is forced to oscillate in heave at high forward speed. The tested Froude
numbers were 0.57 and 1.14. Their results show interesting features. One is
the importance of dynamic restoring coefficients. To explain this effect
theoretically it is necessary to include the interaction between the unsteady
and steady velocity potential. This effect is neglected in the linear theory
described previously. The results also indicate that it is wrong to linearize
about the mean free surface and that it may be better to use the steady wave
elevation as a reference level. The importance of trim and 1ift on the added
mass and damping coefficients are also demonstrated. We have therefore
started development of an alternative theory. We still assume that the velo-
city potential satisfy a two-dimensional Laplace equation in the near-field
of the ship. We find that the steady velocity potential has to satisfy a
nonlinear free surface condition. The free surface condition for the unsteady
velocity potential is linearized around the steady wave elevation along the
ship. In the body boundary condition for the unsteady potential the effect of
the steady potential is accounted for in the socalled m;j-terms. Presently we
have no numerical results available. The intention is to present comparisons
with the experimental results by Keuning and to discuss the importance of the
interaction between the steady wave potential and the unsteady wave
potential. This has relevance because several research groups are presently
involved in developing computer program for ship motions based on distri-
buting three-dimensional sources and dipoles satisfying the classical free
surface condition with forward speed. This free surface condition neglects

the effect of the steady disturbance potential due to the hull.
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Fig. 1  The free-surface elevation in front of a plate at non-dimensiona’
time t(g/d)* = 0.1. The free surface is shown for three different
length scales. Analytical results are from Roberts (1988).

ng = free surface elevation.
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DISCUSSION

Peregrine: Please indicate the solution method used in your nonlinear computations.
Zhao: We used the boundary element method.

Cao: How do you apply the radiation conditions in your computations, especially in the
first and last strips, which are different from the other strips?

Zhao: For the first strip, we set ¢ = 0 and %f = 0 at z = 0. For the last strip, we assume
that the flow leaves the last section tangentially in the downstream direction.
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