A STRONG VORTEX PLACED NEAR A FREE SURFACE

Peder A. Tyvand

Department of Agricultural Engineering
Agricultural University of Norway

Box 65

1432 As-NLH

Norway

We consider an inviscid fluid with a free surface. A line vor-
tex with initial depth of submergence D is suddenly (impulsive-
ly) put into the fluid at time zero. The gravitational accele-
ration is g. The flow is two-dimensional. The vortex has circu-
lation T' , defined positive counter-clockwise. Let us examine
the transient interaction between the vortex and the free surfa-
ce.

Within inviscid theory, it is difficult to generate this single
vortex. But it is possible, if we have an extremely slender foil
to which the Kutta condition applies. At t=0 the foil starts im-
pulsively to move downwards with a large velocity and a small
angle of attack, so that it obtains a constant circulation -7
A starting vortex with circulation T' 4is shed. Otherwise the
influence from the foil on the free surface flow is negligible.

The fluid 1is at rest for t < 0. The vortex is assumed to be
free, i.e. it moves with the fluid velocity according to Helm-
holtz’s theorem. A cartesian coordinate system is defined, with
X axis in the undisturbed free surface and vy axis vertically
upwards. We define x = 0 by the initial location of the vortex.

We introduce dimensionless quantities by defining D as unit of
length, T'/D as unit of velocity, and D2/T' as unit of time. We
have one characteristic dimensionless number; the Froude number
defined by:

3 1/2
F=7"/ (D) (1)
The dimensionless velocity potential is denoted by @ (x,y,t).
The vortex location is given by x = X(t) and y = -¥Y(t). The dim-

ensionless surface elevation is denoted by q(x,t). Our initial/
boundary value problem, with a single free vortex, corresponds
to that of Telste (1989) with two vortices. The solution is giv-
en in terms of a Taylor series in time. After the problem has
been expanded in powers of t, we can write the total velocity
potential as a sum, '

&=+ %

applying the principle of superposition to each order. Here ¢’
is the vortex potential, which satisfies y=0at y = 0. and
takes care of the full singularity of the moving vortex point.
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Its non-expanded version is then:

y + Y y - Y
27 %’ = arctan + arctan (3)
x - X x - X

In eq.(Z)Vﬁs the regular potential. It satisfies Laplace’s equa-
tion for y < 0. The nonlinear terms are here represented by in-

homogeneous conditions at y = 0, generated by lower order solu-

tions. Taylor expansion in time defines the asymptotic series:

¥ ¢ 7'X’Y) ) (%'%’)'%'Xo'yo) (4)
2
+t(%1' (7% JooX ) T (%' ¢2' 1,0 % ) T

By this approach we obtain the behaviour for later time by ex-
trapolation from the initial instant t = 0, and all boundary
conditions are applied at the undisturbed free surface y = 0.

The boundary value problems for the regular potential to each
order are solved analytically by Poisson’s integral formula for
a half-plane. Exact integrations are carried out by residue
calculus. By definition we have:

X =0,¥ =1, p =0 (3)
0 0 0

The zeroth order vortex pctential is then given by:
y +1 y - 1

+ arctan
X b 4

(6)

2 7L %6 = arctan

To the first order, the vortex moves in a straight line;

X =1/(47T) , Y =0 (7)
1 1

with direction of motion opposite to that of a weak vo?teg, see
Lamb (1932,p.223). The zeroth order regular potential is identi-
cally zero. The first order surface elevation is:

q’=(§%)—o= : )
J ¥ 7C(x + 1)

The second order surface elevation is written as a sum of two
contributions;

4
_ i( aiif-?f%, '= Xx - 6x +1 x -1
‘72- 2 29 29 y=o

2 -1 2 2 i
= (470) x (x =-3)/ (x + 1)




the first one from a static vortex and the second one from the
actual free motion of the vortex. The second order position is:

X =0, Y =0 (10)

To second order the vortex moves in a straight line, as to first
order. We note that the contributions to the second order posi=-
tion from the vortex potential as well as the regular potential
are zero. The third order vortex position is given by:

1 1 1
X = ( - ~— ) , Y =20 (11)
3 247 47T 2 r2 3
The critical vortex strength is defined by X = 0:
3
F = F = 27C (12)
c

If the Froude number is larger than this critical value, the
vortex is supercritical (strong) and will accelerate in its
initial direction of motion wuntil breaking of the free surface
occurs. For subcritical (weak) vortices with Froude number below
the critical value, our theory shows that they will be decelera-
ted at small times. A very weak vortex must turn and move stea-
dily according to Lamb’s solution when time tends to infinity.
However, the present theory has a very restricted validity for
weak vortices, and gives no information about such a transition
to steady solution.

From the third order surface elevation, we only give the gravity
dependent part. It has a sign difference compared with the first
order elevation, because gravity waves extract potential energy:

(gravity) bi4
= - (13)
3 2 2 2
37CF (x + 1)

The leading gravity wave is now defined as the asymptotic limit
as /x/ -> 00. It dies out more quickly in space than the lead-
ing wave from a Cauchy-Poisson disturbance (Lamb 1932, p.385),
which may be generated by an initial surface velocity, an initi-
al surface elevation or an impulsively started source below the
free surface.

When this source problem is solved by the present method (Tyvand
1990), it turns out that the leading nonlinear effect is to re-
duce the surface elevation in a region which has the width of
1.36 initial depths. If the source has negative strength (i.e. a
sink), its surface trough will become deeper due to the same
second-order effect. The leading gravitational effect on the
surface elevation is of third order. This shows that a time sca-
ling involving gravity will be incorrect for this transient pro-
blem. Thus the common Froude number expansion will not be useful
for a strong impulsive source, cfr. Vanden-Broeck et al. (1978).
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DISCUSSION

Newman: Have you considered the linear time-domain solution, which could be developed
starting from a vertical line of horizontal dipoles?

Tyvand: No. I have not done any linear theory in the time domain. This is of interest only
for weak (subcritical) vortices. In the present work, I am concerned with the successive
triggering of nonlinear effects shortly after an impulsive start. Two such levels of nonlinear
interactions are needed to produce the exact analytical distinction between a subcritical
and a supercritical vortex. For a vortex pair, Marcus & Berger [1] have studied time
evolution by linear theory. However, their theory is incorrect for strong vortices: it is in
conflict with the experimental, numerical and analytical results of Willmarth et al. [2],
Telste (1989) and Tyvand (3]; these take the full nonlinearity into account and are in
mutual agreement.

Peregrine: A comment: the initial condition & = 0 on the free surface is justified since
there is an impulsive start and the impulsive pressure at the surface is zero.

Schultz: You may be interested in examining the letters by Bernal & Kwon [4] (experi-
mental), by Willmarth et al. [2] (numerical and linear theory) and by Bernal et al. [3].

Tyvand: These papers are related to my work, but none of them are concerned with the
single-vortex problem presented here. Also, all published studies of nonlinear effects are
purely numerical whereas I apply a perturbation technique. Just now, there is a rapidly
growing interest in the nonlinear interaction between free vortices and a free surface. This
field was almost unexplored a couple of years ago!

Tulin: Are there any exact solutions for free-surface flows with an embedded vortex? (I
know of one: some Russian work on a soliton with a vortex inside it).

Tyvand: In the case of the soliton/vortex, the nonlinear interaction must be weak, and
the vortex strength must be adjusted to the soliton height. I doubt that steady solutions
are possible at all if there is strong nonlinear interaction between the free surface and a
vortex moving freely according to Helmholtz's theorem.
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