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In a previous study [1] a comparison was made of wave resistance predictions ob-
tained by Dawson’s method and a Neumann-Kelvin approach, both implemented by a
Rankine source distribution on the undisturbed free surface, and the neglected non-
linear terms in the free surface condition (FSC) were evaluated. It was found that
the predictions by both methods differ by only a few percent for ships with a block
coefficient up to about 0.70. More evidence of this has been collected since by
applying both methods to several practical ship forms. There thus seems to be no
preference for either of these FSC’s with a practical discretization.

However, an important exception is the class of full-formed ships at low speeds.
For several of these, wave resistance curves like those shown in Fig. 1 were found.
At higher speeds both predictions are similar again. But for decreasing speed (still
in a practical range) quite substantial differences appear; the slow-ship FSC
predicts a rapid decrease of the resistance even to negative values, while the Kelvin
FSC still yields a large positive resistance, far exceeding the experimental value.

It is striking that the very similar wave patterns shown in Fig. 2 correspond to
such drastically different resistances. Dawson’s condition typically results in a
small forward shift of the bow wave, yielding a large difference in resistance due to
the strong curvature of the bow waterlines for full ships. Almost all differences in
longitudinal forces on the hull are found at the forebody.

The fact that a negative wave resistance is sometimes predicted is known to most
people that work with Dawson’s method, and is generally attributed to numerical in-
accuracies in the imposition of the hull boundary condition or in the pressure
integration over the hull. But in the cases considered successive refinement of the
hull paneling (up to 1415 panels on one half of the hull) made the resistance con-
verge to a negative value for Dawson’s FSC, so discretization errors can be rejected
as cause of the negative resistance here.

ENERGY BALANCE

A negative value of the wave resistance in the presence of waves radiated by the
ship 1is, of course, paradoxical. Since in harmonic deep-water gravity waves energy
travels with half the phase speed, the flow in a control volume moving with the ship
looses energy through its aft plane. A steady wave pattern can only exist if energy
is supplied at the same rate by the propulsion of the ship; but a negative R, means
that the ship instead extracts energy from the flow. Apparently a qualitatively
correct wave pattern need not have the correct energy budget.

By considering the energy fluxes through the boundaries of a control volume
moving with the ship in a fixed frame of reference, ve can express the wave resis-
tance in terms of an integral over the aft plane S (not necessarily at infinity) plus
a line integral along its intersection with the free surface:
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The derivation supposes a zero energy flux through the free surface, which is
true for zero normal velocity and zero pressure at the free surface, i.e. an exact
satisfaction of both the dynamic and the kinematic FSC.

Let us now redefine the control volume by taking not the exact free surface but
the undisturbed free surface y = 0 as its upper boundary, in accordance with the im-
position of a linearized FSC. Ve then find:
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RV(Z) is now the pressure force acting on the hull under the undisturbed free
surface, which differs from Rw(l) by an integral along the waterline:
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Compared with (1) the aft plane integral is unchanged but extends now only to
y = 0; the line integral has been substituted by an integral over the undisturbed
free surface FSO. In this expression, no assumption on the FSC imposed has been made
yet. .
For simple harmonic waves R (1) is positive definite and independent of the posi-
tion of the aft plane, due to the fact that there is a constant horizontal energy
transport. In expression (2) however, the horizontal energy flux is not constant: the
potential energy is absent as the control volume extends toy = O only. Still (2)
gives a resistance independent of x, because the difference of the fluxes of energy
through two vertical planes is removed (or supplied) through FSO.

If for a more general wave form we use the Kelvin condition to evaluate the
integral over FSO, we find by partial integration again the expression (1) plus an
integral along the waterline akin to (3). So if the Kelvin condition is imposed and
due account is taken of the upper limits of integration, the expressions (1) and (2)
give the same result up to higher order terms. In other words, the resistance from
pressure integration over the hull in our linear problem, which satisfies (2,3), is
equal to the resistance deduced from the vave energy radiated by the ship (corres-
ponding to (1)), hence it is positive if a system of harmonic waves is present at the
aft plane. Again the energy flux through FSO just takes into account the variations
of the potential energy.

However, for free surface conditions other than Kelvin’s this equality may be
lost. If a realistic wave system is present behind the ship (1) will again give a
positive resistance; but R,(2) may be different as part of the energy flux may have
been supplied through the ¥ree surface. In the extreme case the pressure integration
over the hull may give a negative resistance: the ship ‘rides’ on waves generated by
the free surface condition.

In order to obtain a more realistic wave resistance prediction two approaches now
suggest themselves: either to use the far-field resistance expression (1), or to
modify the free surface condition so as to eliminate the excess energy flux through
the free surface.

FAR-FIELD RESISTANCE CALCULATION

An important difficulty is present in the evaluation of the far field momentum or
energy flux according to (1). In the usual Rankine source implementation, the energy
or momentum flux through a plane S, located at or behind the aft edge of the free
surface panel distribution is always zero! Since no singularities are present outside
a control volume surrounding the double hull and the free surface panel distribution,
no momentum is left in the flow behind it due to d’Alemberts paradox. The wave resis-
tance is an internal force in this whole collection of source panels, and is compen-
sated by an opposite force exerted by the hull on the free surface sources. Thus the
first term of (1) is dominated by the effect of truncation of the free surface and
will only give a useful result if the free surface paneling is continued a large
distance beyond S.. The same is likely to be true for wave pattern analysis methods,
vhich after all are based on (1).

ENERGY FLUX THROUGH THE FREE SURFACE
Another remedy would be to eliminate the excess energy flux through the free sur-

face, dE/dt I (p U ¢x . AVn ~U. 8p . nx)dS, vhere AVn is the remaining normal
FS

velocity and Ap the pressure at the calculated free surface. To eliminate the energy
flux at every point of the free surface we have to satisfy the exact nonlinear FSC’'s;
the best to be achieved in a linear method is a reduction of the energy flux to
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higher order in the perturbation parameter, Fn. Thus to leading order (Fn4) the far-
field and pressure resistance coefficients are equal if both AV_ and 48p are 0(Fn6).

Consider the best estimate of the p=0 surface (y = nh*) in"the notation of [i1n.
The energy flux through this surface is determined by the violation of the kinematic
FSC only, 4V _. This is equal, to minus the sum of the terms 3 to 7 evaluated in [1],
i.e. nonlinear tsrms of O(Fn”) plus the linear transfer terms né _ + nh_ ¢’ which
are of O(Fn”, Fn') and are neglected in Dawson’s FSC. Hence the de¥¥red rddy¥ of the
energy flux is only achieved if these transfer terms are included.

Now this is exactly what has been derived in a somewhat different way by Eggers
[2]. His FSC, derived from the required invariance to leading order of the far-field
resistance, differs,from Dawson’s FSC just by these transfer terms and is, therefore,
consistent to O(Fn'). Surprisingly however, calculations with this FSC for our test
case predict an even more strongly negative resistance as a result of a still larger
forwvard shift of the bow wave. Moreover, for higher Fn the results become quite un-
realistic, with local flow reversal at the free surface. The precise cause of this
could not be determined yet; but the singularity in the FSC at the point where the
double body flow velocity |[V®| = 1/43, [2], may play a role. Further study is needed
to clarify this behaviour.

CONCLUSIONS

This study has shown that the negative wave resistances found for full hull forms
at low speed are not a result of numerical inaccuracy but of the formulation of the
free surface boundary condition. The use of a linearized free surface condition im-
posed on y = 0O changes the energy balance in such a way that a negative resistance is
not ruled out. The slow ship FSC may locally supply energy to the waves which has no
counterpart in a wave resistance acting on the hull. This energy flux through the
free surface is directly linked to the order up to which the free surface condition
is satisfied. Eggers’s formulation of the FSC in principle reduces the energy flux to
higher order, but did not give more realistic results for the present case. A method
solving the exact dynamic and kinematic FSC is perhaps necessary to exclude the
occurrence of negative resistance.
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Fig. 2a Calculated wave patterns, with Dawson’s (left) and Kelvin FSC (right),
at Fn = 0.177 (service speed) '
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Fig. 2b Wave profile along the hull and centreline
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DISCUSSION

Wu: Could I just clarify the implication of your third paragraph: both wave patterns correspond to positive
resistances, but negative resistance only arises from the equation used to calculate it?

Raven: This is a matter of terminology. For me, the most basic ‘resistance’ is the pressure resistance, since
it represents the natural way in which a force is being exerted on the hull. The far-field momentum or energy
flux may have better properties, but that is another question.

Grue: What is the problem with choosing any control surface surrounding the body for evaluating the
energy flux and the momentum flux?

Raven: As explained in the paper, there are no problems in the exact case, but two basic problems for a

linearized method:

(1) Energy can be supplied through the free surface, except for special FSC-formulations; thus, the resistance
may depend on the choice of control surface. In the case considered here, a control surface fitting tightly
around the hull would give a negative resistance, whereas one at a larger distance would give a positive
resistance. ‘

(2) If the control volume encloses the entire free-surface panel distribution, the main part of the momentum
and energy flux is zero due to d’Alembert’s paradox.

Cao: Did you also calculate the wave resistance using Lagally’s theorem? If so, how do the results compare
with those obtained by pressure integration over the hull?

Raven: Yes, besides the pressure integration, two expressions based on Lagally’s law are always evaluated.
In general, the three results are almost equal, and, in this case, they were all negative. Indeed, one of the
Lagally expressions is just the integral over FSp in (2); this agrees with my statement that the other term,
the integral over Sp, must be zero.

Bertram: A comment: if only we could succeed in obtaining the nonlinear solution for blunt bodies, the
whole discussion would become obsolete! Unfortunately, at present nobody has yet succeeded for full bodies.

Raven: Perhaps I should mention that Ni [1] succeeded in calculating the nonlinear solution for the HSVA
tanker model, but convergence of the iteration failed for this case as soon as certain numerical details were
changed, so I do not consider this to be an entirely satisfactory result.

Tulin: Can a longitudinal wave cut be used to estimate the wave resistance?

Raven: In principle, yes; in practice, there are some drawbacks:

(1) You need a cut length of several times the ship length, at a sufficient transverse distance from the hull.
This would require a much larger number of free-surface panels and a large increase in computation
time.

(i1) The numerical damping inherent in the discretized method is likely to cause a decrease of the wave-
pattern resistance with distance from the hull.

(iii) The effects of truncation of the free surface will be larger than on the pressure integration over the hull.
Similar experiences are reported in [2] for a transverse cut.

Tulin: It has been pointed out several times that Dawson’s method (in fact, all so-called ‘slow-ship’ theories)
is not asymptotic to zero Froude number. I think that the same is true for the Kelvin-Neumann problem.
Perhaps this mathematical failure is part of the reason for the observed discrepancies?

Raven: This may be a correct way of interpreting some of the results. Of course, energy must be conserved
whatever the FSC; and the explanation in terms of energy flux through FS is not affected. But, if the
slow-ship condition is not asymptotically correct for Fn — 0, expansions in Fn may be meaningless. In that
case, there is no reason a priori why the energy flux will be smaller with a FSC consistent in F'n. Although
without further study I cannot affirm that this is the cause of the unexpected results with Eggers’s FSC, I
appreciate your suggestion very much.

Eggers: Let me recall that, in my understanding, the comparison presented here is between a (corrected)
Dawson approach and its modification by exchanging the free surface condition for the form given by Kelvin.
This means that you investigate a Rankine source approach to the Kelvin-Neumann problem formulated by
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Brard [3], hence without the line source distribution advocated by Brard for compensating singular effects
due to Kelvin sources.

I trust that it is well known in our community that from a formal point of view Dawson’s FSC has two
deficiencies:

(i) No attempt is made to admit terms from a vertical Taylor expansion in the transfer of the boundary
condition to the undisturbed free surface.
(i) The influence of the double-body flow curvature is omitted when converting the FSC to streamline-
orientated coordinates.
On the other hand, Dawson does not discard vital terms connected with first derivatives of the disturbance
potential, as would be required under orthodox application of an order change rule.

In defining his approximation for the wave resistance, Dawson inconsistently disregards the line integral
of n* along the waterline, representing the action of pressure or (with inverse sign) the momentum flux in
addition.

If we agree that wave resistance tends to zero with a high power of Fn, we must accordingly satisfy the
FSC up to that power at least. In a comparison with an approach using genuine Kelvin sources, I would
expect that Dawson’s approach cannot exclude energy inflow from upstream, as he could hardly simulate
evanescent wave free modes; but this should equally hold for your modified approach. For the present
comparison, I wonder if for a blunt bulbous bow form the amount of transverse flow components for the
influx integral, which represent positive energy flux from upstream, may be stronger with Dawson’s FSC?

Raven: Thank you. Perhaps I may point out that in my program the erroneous transformation to the
streamline grid has been corrected and the double-body flow curvature is incorporated; see [4] for some
remarks on this. However, the deficiency (i) is still there. It is these transfer terms that should be added so
as to reduce the energy flux through the free surface to a higher-order quantity. The results of calculations
with the FSC so obtained are, however, most puzzling.

Your remark on the waterline integral over n* (see (3)) is perfectly correct. In the present case, this
integral would reduce (but not eliminate) the negative resistance for Dawson’s FSC, but is negligible for
your FSC-formulation. I follow Dawson in disregarding it, since according to my experience it sometimes
spoils the wave-resistance prediction. But I agree that this is not quite a scientific argument! Perhaps the
predicted sinkage of the ship should be incorporated in the wave elevation at the waterline, as in [5]?

Concerning your last point, in the present Rankine-source comparison, there is no significant difference
in the transverse velocities near the upstream edge of the free-surface domain between Kelvin’s and Dawson'’s
FSC; in both cases, their magnitudes are small, less than 0.3% of the ship speed, so the energy influx must
be negligible.
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