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Introduction

Highly nonlinear problems such as capsize and deck wetting are of
great importance to naval architects, who require not so much a full
numerical simulation of the phenomena (physical model tests satisfy
that need), as a good simplified approach which can give them insight
into the controlling parameters. The example of capsizing is
particularly timely, since recent developments in the theory of
nonlinear dynamics and chaos suggest that ships should have a
well-defined regular waveheight beyond which they will capsize in
transient conditions (Rainey & Thompson, 1990). This gives a rational
measure of the stability of both physical and numerical models,
setting the stage for work on the required "good simplifications".

Previous Work

Attempts have been made (most recently in de Kat & Paulling 1989) to
take the results from a linear 3-D diffraction analysis (i.e. added
masses, diffraction forces, etc.) and use them in a time-history
simulation. The difficulty is that our problems also require highly
non-linear features in the simulation (e.g. unless its roll-stiffness
characteristic is ultimately very non-linear, a ship cannot capsize at
alll), and the two cannot be combined without glaring inconsistencies.
For example, it is not at all clear what relevance the linear-theory
heave added mass of a catamaran has to its hydrodynamic loads at a
roll angle of 90 degrees.

A more interesting approach is derived from "strip theory", as
reviewed for example in O'Dea & Walden (1985). The vertical
hydrodynamic load F(x,t) at time t and position x along the length of
a slender ship is taken as:

F(x,t) = D/Dt{M(x,t)Dz/Dt} + N(x,t)Dz/Dt +@gA(x,t)z
where D/Dt = /9t - VJ/dx

and V is ship forward speed, z is vertical motion of ship section
relative to the water surface, and M,N & A are two-dimensional added
mass, damping, and cross-sectional area respectively, which are all
assumed to be functions of z as well as x.

This is a heuristic generalisation of Lighthill's rigorous result for
a slender fully-immersed flexible body (Lighthill, 1960), using
hydrodynamic parameters which incorporate the effects of the free
surface. It appeals to intuitive ideas about "rates of change of
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momentum” - the problem is that the fluid "momentum" around a moving
body is in fact not well-defined (Lamb, 1932 art 119), because the
reaction forces at the far boundaries cannot be ignored. As far as
that type of argument goes, for example, one might conclude that the
lateral velocity of a neutrally-bouyant circular cylinder ought to
double if it moved broadside out of the water (since its effective
mass had halved), implying a doubling of the kinetic energy (half the
mass and double the velocity), which is obviously unsatisfactory.

Energy Arguments Under a “Wavy Lid"

An equally fundamental objection to the above strip-theory approach is
Ursell's remarkable demonstration (Ursell, 1968) that in head seas the
waves seen at any section of a ship will be distorted by sections
previously encountered by the wave, no matter how slender the ship is.
This means that even in small waves no formula of the above type can
be justified by appeal to diffraction theory, and suggests that
greater consistency may be achieved with an altogether different
approximation. One such is the "wavy 1id" approximation introduced in
Rainey (1989), in which the motion of the water surface is assumed to
be unaffected by the presence of the ship, but otherwise all
potential-flow effects are retained. In particular, the water pressure
is affected by the ship, unlike the superficially-similar but much
cruder "Froude-Krilov" approach.

The attraction of this approximation is that it removes all the
degrees of freedom associated with the free surface, so that the
hydrodynamic loads on the ship are "memoryless” and determined solely
by its instantaneous position and velocity. In these circumstances the
ship has a fully-nonlinear equation of motion, which can be determined
from the fluid kinetic energy by the classical Lagrange argument
(Lamb, 1932 art. 136), from which the Lagrange coordinates can be
eliminated to give (Rainey, 1989, egn. 6.8):

dN/dt = @ - dI/dt + {0, (m+3), U]} + Ae/AX

Here N (m,h) is the linear and angular "momentum" (including the
"1mpulse” from the added mass), I = (j,k) is a similar "wave impulse”, Y
is the ship's linear veloc1ty, Q is any additional non-hydrodynamic
force and moment, and Ae/AX is the position-derivative of the fluid
kinetic energy e.

The great advantage of deriving fluid loads in this way from the fluid
kinetic energy is that the complexities of reaction forces at the far
boundaries are avoided, and a relatively crude approximation to the
flow can be used, compared with the standard approach of deriving
fluid loads by integrating surface pressures. An example (taken from
Rainey 1989) is that a simple estimate of the added mass of a slender
cyllnder, ignoring end- Pffects, is sufficient to give the correct
expression for the "Munk moment" via the m,y term above - obtaining
this result by surface pressure integration would require a detailed
picture of the end-flows.
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A Suitable Fluid Kinetic Energy Expression for a Slender Ship

Rainey (1989) is concerned with the problem of a lattice-type offshore
structure, for which surface intersections are relatively unimportant,
so that the fluid kinetic energy may be expressed by a strip-theory
formula that is exact in the limiting case of slender structural
members (and incidentally allows a unification with diffraction
theory, to second order). That argument fails in the present case of a
slender ship, however, because the surface intersection extends its
whole length, and means that on a two-dimensional strip-theory view
the fluid velocity will only fall inversely with the radial distance
(owing to the volumetric changes produced by variations in A above).
This would lead to infinite sectional added masses M(x,t) above, and
thus infinite kinetic energy - so clearly an important feature of the
problem, keeping the kinetic energy finite, is that the far flow field
is three-dimensional, because the ship has a finite length.

It appears necessary, therefore, to model the flow field in two
stages. First, we can distribute three-dimensional

monopole sources of strength per unit length s(x,t) along the
centreline of the ship's waterplane, in such a way as to give the
correct volumetric changes, i.e. set

s(x,t) = DA/Dt

where D/Dt has the meaning above, except that it would appear to be
advantageous to make V the forward velocity relative to the mean
incident water velccity over A. We also see that this velocity field
does not satisfy the rigid-1lid boundary condition precisely, unless
the water surface is flat. The error involved clearly reduces with
waveheight, but of course we are not here concerned with unification
with diffraction theory, but merely with an approximation to the fluid
flow good enough to give a faithful reflection of its kinetic energy.

The second stage is to add similarly distributed dipoles, gquadrupoles,
octupoles etc., to give a closer approximation to the local flow
around the hull. In all cases we must choose multipoles with the
symmetry necessary to give zero flow normal to a flat free surface, as
we had with the monopole. This time, however, the kinetic energy falls
off much more rapidly with radial distance, so that the flow can be
approximated in the normal two-dimensional strip-theory manner. For
example, the flow produced by a semicircular-sectioned hull moving
sideways in still water will be described by a two-dimensional dipole
with its axis parallel to the water surface.

To find the kinetic energy of the flow, we follow the argument in
Rainey (1989) sect. 5, and transform all terms involving the incident
velocity potential into simple integrals over the immersed volume or
waterplane. This leaves the kinetic energy of the monopoles, dipoles
etc. above, acting on their own. We can now take advantage of the
orthogonal property of cylindrical harmonics (Lamb, 1932, ch. 4) to
see that the kinetic energy can to a good approximation be further
divided into that from the monopoles acting alone, and that from the
rest acting alone. The latter can be expressed in the normal
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two-dimensional strip-theory manner in terms of integrals along the
ship's length of sectional added masses (for sway, roll, or heave as
appropriate) of a special sourceless kind, multiplied by incident-wave
and local ship velocity. The former, on the other hand, cannot be
treated in strip-theory fashion as we saw above, but must be left as
an integral over the ship's wetted surface S (i.e. Rainey 1989 eqn.
5.4). This requires numerical integration around the edge of a series
of sections spaced along the length of the ship - it may be sufficient
to treat the sections as semicircular (i.e. to ignore the kinetic
energy of the fluid between S and such a semicircular surface), so
that advantage may be taken of axial symmetry.

In any event, the total kinetic energy will have the quadratic form
given in Rainey (1989) egn. 5.11, thereby defining I and N for the
~purposes of the above equation of motion. - -

Concluding Remarks

The above is intended as an outline sketch of the new approach only -
the important point is that by means of a single approximation (the
"wavy 1id"), the problem is reduced to the relatively mundane one of
calculating fluid kinetic energy, for which good approximate
strip-theory treatments are fairly obvious, and need less details of
the flow than a conventional surface pressure integration.

We can however note a couple of the more interesting non-linear
aspects to the new approach. For example, it will produce "squat" and
"trim" effects depending con the chip's forward speed, because the
kinetic energy will vary as a function of pitch and heave (cf Lamb,
1932 art. 137). In addition, it will produce a "slam" effect during
large changes of waterplane area (caused e.g. by bow emergence in
large waves, oOr superstructure immersion during large rolls) as a
consequence of the DA/Dt term above (cf Rainey 1989 egn. 7.4 et seq.).
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DISCUSSION

Miloh: I would like to make a few comments:
(1) The Munk moment is not only valid for slender bodies but also for elongated (axisymmetric) bodies. In
any case, it may be considered as a special case of the Kelvin-Lagrange moment equations.
(ii) Taylor’s energy expression may also be deduced from Lagally’s theorem.
(iii) Energy methods have been used by Lamb and by Milne-Thompson to compute the hydrodynamic loads
acting on a sphere moving close to a rigid wall or a relief surface (the infinite-frequency limit), and in
several of my papers on manoeuvring in shallow water and water-entry [1]-[4].

Rainey: Thank you for drawing my attention to your pioneering early papers on energy methods. I had
hitherto only been aware of [5], which I noted briefly in (Rainey, 1989; cited as R below), as an example
of an analysis retaining the free-surface degrees of freedom, and thus belonging to a different branch of the
subject from my ‘wavy-lid’ approach.

I now find that (3] is closest to my work. In [3], equations are derived (32 & 33) for a body moving in
the presence of fixed boundaries, which correspond precisely to those above, in the special case j = [ = 0,
so that only the Munk moment (which I accept as valid for arbitrary bodies; see pp. 304 & 312 of R) and
Ae/AX remain. The notation in [3] is much longer though: I believe the use of components in a body-fixed
frame obscures the fundamental structure of the problem, and is only relevant if the resulting equations can
be solved analytically, as in the classical literature. In particular, the computer program will be neater if N
is used as the state vector. On the other hand, the notational and conceptual differences make cross-checks
more valuable. For instance, R(6.8) can be deduced from (21) & (28) in [3], if R(5.11) is used. Thus, the
lengthy algebra in [3] and in Appendix B of R confirm each other, increasing the credibility of both.

Turning to the classical example of the attraction of a sphere moving parallel to a wall (Lamb, §137),
and also Lagally’s theorem [6], I believe the former shows the superiority of energy arguments over the latter,
because Kelvin & Tait could deduce the force using a potential (Lamb, §99, (3)) which is too crude to give
this force by surface pressure integration, and therefore too crude to obtain using Lagally’s theorem (which
replicates pressure integration by virtue of (7) in [6]). This superiority is also well illustrated by your results,
such as in your water-entry paper in these Proceedings.

Newman: You are in danger of overselling this method — there are problems which can only be tackled with
panel codes, such as the ‘microseism’ second-order diffraction effect [7] and the pitch moments on submerged
slender spheroids [8]. There is room for both — simple methods, like yours, and panel codes.

Rainey: Thank you for drawing your recent papers to my attention. They show very clearly the sort of
wavelengths below which my ‘wavy-lid’ treatment breaks down.

Consider [7]. The analysis therein, applied to the vertical load on a TLP leg (vertical cylinder of radius
a and draft 4a), can be compared with the second-harmonic vertical load amplitude predicted by R(7.3) as

pgaA’(n/4)K ae~ 8¢,

where K is the wavenumber and A is the amplitude. This is larger than the results in (7] (Fig. 2 and (28))
when Ka<0.2, and the transition is sharp — the microseism effect dominates by a factor of 10 at Ka ~ 0.4
and is dominated by a factor of 10 at Ka =~ 0.1. For example, for the ISSC TLP (which has legs of the
above proportions), Ka = 0.2 corresponds to waves of period 13 sec. We conclude that for this TLP, my
second-harmonic calculation is almost irrelevant to second-harmonic-induced heave resonance effects, but
that microseism effects are almost irrelevant to survival-wave calculations. This, of course, is only a rough
guide: interactions between legs will magnify the microseism effect, and pontoon contributions (see below)
will magnify second-harmonic loads. Also, for such small Ka, the TLP motions will produce second-order
errors in the body boundary conditions which may dominate the second-order potential, an effect included
by both panel codes and R.

Consider [8]. It gives ‘exact’ panel-code calculations of the steady heave force and pitch moment on a
submerged slender (10:1 aspect ratio) horizontal spheroid in head seas, and, for comparison, slender-body-
theory calculations using the ‘IB’ approximation (IBA) introduced in [9]. On p. 240 of [9], it is claimed that
the IBA, which assumes that no steady forces or moments are produced by body motions in calm water, is
justified because such forces and moments vanish in comparison with steady wave-induced ones. I dispute
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that. A counter-example is a cylinder undergoing in-phase heave and surge mnotions — the ‘Munk moment’
felt in pitch will have a steady component which depends directly on the heave added mass (R, §3), and
thus depends on slenderness in the same way as all other hydrodynamic forces. This moment is traceable
to end-effects (R, §3), so I dispute the claim on p. 239 that steady forces and moments can be calculated
without including end-effects {or taper). They can be seen, via R(7.2), to produce a steady vertical force
on a horizontal cylinder heaving in response to head seas, for example. Thus, the IBA involves additional
approximations beyond slenderness alone, and so (contrary to the claim in [8]) it is not clear that it will
replicate the results of my method, where no such additional assumptions are made. The IBA might be
expected to give results which agree less well than mine with the panel-code results, especially in the ‘free
spheroid’ cases in [8]. In the fixed-cylinder case, however, an argument similar to R(7.6-7.8) (and given in
my UK Dept. Energy Offshore Tech. Rept. OTH 89 311) gives the force per unit length as

(A) pe(a)r +m(a+(1-2l}v) + [2mv]r — mu(V): (a = particle acceleration)
in the notation of R. In the special case of the steady vertical force on a horizontal cylinder in deep-water
waves, with a principal added mass axis vertical, (A) agrees exactly with (54) and (55) of [9], indicating that
the IBA is now correct. Also, the taper of the spheroid used in [8] now produces only a second harmonic
and no steady force (at least vertically), so the fixed-spheroid IBA results should agree with my predictions.

So, let us compare these fixed-spheroid results with the panel code. As I would expect, the pitch moment
decays in relation to the vertical force as Ka falls from 0.5 to 0.16, the lever-arm dropping from 0.035L to
0.005L (L = spheroid’s length). But I am surprised that the two methods give vertical forces in a fixed
ratio of ~ 0.7, for all Ka. This seems hard to reconcile with the physical mechanism postulated as causing
the differences, which is the build-up of wave elevation along the body’s length, for then one would expect
a far better vertical force agreement once the pitch lever arm had dropped to only 0.005L. I would be
interested to see computations at different wave headings (where the wave build-up will be less) and of the
second-harmonic heave force and pitch moment (which are predicted by (A) to be strong except for beam
seas). Another avenue to explore is the enhancement of a cylinder’s added mass caused by the proximity
of my ‘wavy lid’; according to R(6.8), this ought to produce an additional steady vertical force through the
term Ae/AX.

All this, of course, perhaps only illustrates the sagacity of Prof. Newman’s final sentence!
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