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SUMMARY

Numerical computations of steep overturning water waves meeting a vertical wall
are described. For waves with vertical faces, quoted from experiments as giving the
most severe impacts on a wall, we find that impact does not occur. Instead there is
extremely violent water motion as the water surface at the wall "flips through" past
the wave crest with high velocity and acceleration.

INTRODUCTION

We are studying shallow-water waves which are commencing to break as they meet a
vertical wall. This is an example relevant to coastal structures for which numerous
experiments have been reported. Reports from visual and movie observations indicate
that the most severe impacts occur when an incident wave hits the wall with a near
vertical face. Subsequent motion sends water to a great height. Examples of
experimental reports are Bagnold (1939), Nagai (1960), Mitsuyasu (1962§ and
Partenscky (1988).

The water wave motion is modelled by an accurate and efficient boundary-integral
method for irrotational flow which has evolved from that described by Dold &
Peregrine (1986) for a periodic wave domain, and is closely related to that used by
Tanaka, Dold, Lewy and Peregrine (1987) to study the instability of solitary waves.

There is a wide range of possible incident waves. We have chosen to study
relatively large and substantial waves for two reasons. Firstly, experimental, and
prototype, structures often have a relatively steep slope of the bed reaching out to
deeper water. Such a rapid shoaling leads to much larger breakers thar on a gently
sloping beach. Secondly, as breaking progresses the numerical method is limited
because the surface curvature becomes too large to resolve adequately: the evolution
of larger waves can be followed further.

COMPUTATIONAL EXAMPLES

The wave we choose to illustrate in this work starts as a long wave of elevation
with water depth increasing smoothly from 1.0 to 2.5 as we pass from x = -0 t0 x =
+o. (We use units in which the initial depth, the acceleration due to gravity and
the water density are all unity.) Finite-amplitude shallow-water theory indicates
such waves steepen, and the full potential theory solution, of which the later stages
are shown in figure 1, demonstrates that the wave overturns and breaks. Figure 1
shows a computation for an unbounded region of water, that is, the wave is unimpeded
by any obstruction. We simulate a vertical wall by using symmetrical initial
conditions corresponding to two such waves propagating towards each other. The
"wall" is the line of symmetry which in figures 2 and 3 lies at X = 0. The centre of
the initial wave profile lies at Xo, corresponding to placing a wall at -Xo in
figure 1.

Figure 2 shows the case Xo = 8.5 where the wave overturns before meeting the
wall. The final profile can be used to give a good estimate of the velocity with
which the overturning jet hits the wall, and of the volume of trapped air. This is
the type of result we expected initially.
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Figure 3 shows the case X, = 8 in which the wave starts to overturn but is
prevented from forming a jet by the rise of water near the wall. This rising water
accelerates the near vertical face of the wave to velocities around 5 at the final
time illustrated. However, these velocities are too small to permit impact because
the water in the trough at the wall has been violently accelerated upward, by as much
as 3000g, and has a velocity greater than 20. Although we have not been able to
follow this flow any further it is clear that a jet of water will travel upwards
causing water to reach a height of at least 200 times the initial depth (in the
absence of air resistance). The peak pressure on the wall is 36 and lies just below
the water-line. It is still rising fast at the last time computed. The total force
on the wall is 44 and should be compared with an initial hydrostatic force of 3.

The pressure distribution beneath the X, = 8 wave at the final time for which it
is reliably computed, is shown in figure 4. Two features are apparent. The peak
pressure causing the violent acceleration up the wall, and the wide spread of the
substantial pressures greater than twice the hydrostatic head. For example the
pressure at the corner between the wall and the bed is greater than 10. Both of
these features also appear in calculations of impulsive pressures due to impact
(Cooker and Peregrine, this meeting). The usual experimental arrangement of pressure
measurements on the wall is unlike%y to distinguish between an impact and the violent
"flip through" that we have revealed.

In order to follow through to see the clear formation of a vertical jet we
illustrate a much weaker example in figure 5. This is for Xo = 5.5. Even so the
maximum vertical acceleration is greater than 45g and the jet can rise to more than
20.

DISCUSSION

After these computations it is no longer clear that the most violent impact of a
wave on a wall is that when the wave surface and wall are parallel. The intense
converging flow illustrated here, for X, = 8 might well yield the most severe
conditions. In some ways it is reminiscent of the collapse of a vapour filled
cavity. As in that case the upper limit of pressures, for the optimum wall and wave
arrangement, is likely to depend either on jet formation disrupting the near
cylindrical symmetry as in figure 3, or compressibility effects. In practical
examples wall roughness may be as important.

We see no reason to consider a vertical wall as a special case and expect similar
"flip through" behaviour on steeply sloping beaches, overhanging walls and in the
slamming of ship hulls.
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Figure 1. The evolution of a long wave of height increase 1.5 at times 4.0,(0.2),5.0, since its
-0.814 initiation centred on X = 0.
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Figure 2. A long wave of height increase 1.5 initiated at Xg 0 8.5 at times 0,(1),4.0,(0.2),
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Figure 4. Pressure contours under the wave shown in figure 3 at time 4.440. Contour interval
2g. Maximum pressure 36.4.
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Figure 5. A long wave of height increase 1.5 initiated at Xg = 5.5 at times 2.5,(0.1),3.4.
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DISCUSSION

Newman: What is the relevant regime in practice — the intuitive impact/cushion phe-
nomenon or this one?

Peregrine: The full range of regimes occurs in practice. The interesting question is which
gives the most severe pressures? I suspect the ‘flip through’ mode as being most severe. In
the direct impact case, it seems very unlikely that the overturning jet will attain a velocity
of more than about 5(gh)!/2, However, one can imagine waves like the computed example
with ¢y = 8 which ‘focus’ to an even smaller region before giving birth to a smaller but
more violent upwards jet. Thus, there is no clear upper limit to the velocity of the upward
jet or to the acceleration and pressures which produce it.

Schultz: Is it clear from the experimental literature that the wall jet regime (of the type
that you can model here) is more hazardous than the slamming of overturning waves?

Peregrine: No. There are very few detailed observations of water motion with a time
resolution of the order of a millisecond.

Sclavounos: Are there any practical limitations of the numerical scheme, such as time-
stepping vs. panel size in the jet region where the rate of change of the flow is very rapid?
Peregrine: Time stepping is performed with a Taylor series method. Time steps are
chosen to keep the fourth and fifth terms of the series below a chosen tolerance. We have
run with different tolerances. In the most severe case illustrated, final values of At were
less than 10™* and the shortest distance between points was 0.003.

Korsmeyer: Have you tried to solve the problem using a gridded wall onto which the
free-surface grid strikes? Presumably this is what one would have to do in three dimensions
rather than employing symmetry.

Peregrine: No. We shall be studying sloping walls soon, but we do not require grid points
on impermeable walls.
Greenhow: How important is the previous wave’s downwash?

Peregrine: The horizontal velocity at the wall remains zero. Our computation corre-
sponds to starting integration at a trough when seaward motion has ceased.
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