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One of the fascinating problems in hydroballistics is the ricocheting, or
bouncing, of a rigid body (projectile) off a free-surface. Often one strives to
enhance the bouncing effect, as we have all tried to make stones skip across a
water surface by throwing them at grazing angles. On the other hand, ricochet-
ing phenomenon may be a hazard and should be avoided when possible. The
interest in the ricochet problem is indeed long-standing and goes back to the
turn of the 18th century when the ricochet phenomenon was used as a technique
for attacking ships with cannon balls. Maybe the most well known military ap-
plication of this effect was the British so-called Wallis’s ’bouncing bomb’; which
was used by the allies during World War II for demolishing the dams in the
Ruhr. An interesting historical account and a general discussions of ricochet
firing including a list of some possible applications, has been given in [1].

The theorectical aspects of the ricochet problem for arbitrary shape are very
involved and analytic solutions do not exist. For this reason a first attempt is
made here to analyze spherical shapes. In addition to the simplications intro-
duced by the choice of the particular geometry, the theorectical predictions may
be also compared against some available experimental data on the bouncing
effects of spherical projectiles [2]. However, the main motivation for the present
study was to verify analytically the following rather simple empirical relation
which has been suggested by Birkhoff for the critical ricocheting angle of a

sphere [1];
8. = 18°\/p; /p, (1)
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where p; and p, denote the densities of the fluid and rigid body respectively.
Here 6. denotes the critical angle between the body velocity vector and the
undisturbed free-surface at the instant of contact, beyond which a ricochet will
not occur and the projectile will generally enter into the water.

A severe limitation of the empirical formula (1), which is often used as a
design criterion, is that it does not depend on the Froude number, contrary
to experimental results which demonstrate a very strong dependence on both
velocity and sphere diameter. In this work, an attempt is made to account for
both size and impact velocity in the analysis of the critical angle. Indeed, we
have found that the critical angle varies considerably with Froude number and
density ratio (see Fig.1) and that equation (1) may be considered only as an ap-
proximation for infinitely large Froude numbers. It has been also demonstrated
that there is a critical value for the Froude number, (of the order of 400) below
which a ricochet is not possible. Also obtained are actual sub-surface trajecto-
ries for various angles of incidence, from which important parameters, such as
the maximum penetration and the total range, may be found (Fig. 2).

The analytic approach of the paper is based on a Lagrangian formulation of
the early stages of water impact (see recent review of the subject [3]). During
the initial stages, inertia forces are shown to dominate viscous, surface tension
and compressibility effects. The free-surface is replaced, to first- order approxi-
mation, by an equipotential surface and a potential flow problem about a double
spherical bow! is solved by employing conical harmonic functions [4]. Instead
of integrating the pressure, which may introduce considerably large numerical
inaccuracies especially at small depth, an energy approach has been employed,
based on the extended Kelvin-Kirchhoff equations of motion for bodies with
time varying added masses [5]. The analysis yields analytic expressions for the
added-mass coefficients of a partially submerged sphere (the infinite frequency
limit) for both heave and sway motions, as well as their derivatives with respect
to the instantaneous submergence depth which render the slamming loads. The
analytical solution is based on the application of the Mehler-Fock transform and
on the asymptotic solution of the resulting integral equations [6).

The case of a vertical (axisymmetric) impact may be considered as a lim-
iting one of the general oblique water entry problem. A comparison between
our theorectical prediction of the slamming coefficient and the comprehensive
experimental measurements of (7], shows excellent agreement (Fig. 3). Also
calculated is the wetting-factor correction which determines the maximum free-
surface rise on the sphere. Comparing the analytic wetting-factor with exper-
imental data (Fig. 4), again yields a surprisingly good agreement, in view of
the inherent complexity of the problem. In both figures, the full line represents
theory, the dark points represent experimental measurements and the dotted
lines are empirical curve-fitting correlations.

The paper concludes with an order of magnitude discussion of viscous, sur-
face tension and compressibility effects, which were neglected in the present
analysis and with some examples of possible extensions to non-spherical shapes.
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PENETRATION DEPTH VS. HORIZONTAL RANGE
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DISCUSSION

Korsmeyer: I am curious to know if you mean that %(Added mass) is difficult to compute
numerically or impossible to compute numerically?

Miloh: It is not easy (standard methods are not very accurate) to compute the time
derivatives of the added-mass coefficients for relatively small submergences. In this limit,
I think that one should use the proposed asymptotic expansion.

Tuck: I thought that the horizontal (sway) problem might have more of a lateral asym-
metry (like planing surfaces) with a detachment point that is determined by the solution.

Miloh: The rear detachment point in the solution is simply determined, to first order,
by the condition that the limiting streamline is tangential to the body at the detachment
point, 1.e. that it is parallel to the instantaneous velocity there. This assumption has been
verified experimentally by Birkhoff et al.; see [1].

McGregor: Some years ago, during slamming studies at the University of Glasgow [1], we
found it necessary to accept that, immediately before a vertical entry, the air is compressed
and, consequently, the water surface is depressed. In addition, immediately after impact,
a spray root develops. Are these mechanisms likely to be significant for an oblique impact?
Incidentally, we thought that we were computing the initial rate of change of added mass
adequately, using the VOF method.

Miloh: Fluid compressibility effects and those of compressed air may become significant
during the initial stages of impact of bluff and flat-bottomed bodies. These effects may
be neglected for the sphere-impact problem; see [3]. The spray root which develops im-
mediately after impact will clearly alter the velocity field and the pressure distribution
in the neighbourhood of the confluence of the fluid-solid-air contour. This effect is more
pronounced for two-dimensional shapes. However, for spherical shapes, it will have only a
secondary effect on the total hydrodynamic force experienced by the body [2].
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