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INTRODUCTION

In a recent paper, Ikeno, Shimoda & Iwata (1988), a theoretical and experimental
study was performed to determine the reflection characteristics of a breakwater
consisting of a chamber placed on the fluid surface as shown in Fig 1. The
equilibrium position of the free surface (y = d) can be changed by either increasing
or decreasing the air pressure inside the chamber. The problem is closely related to
models of oscillating water columns used for extracting energy from ocean waves,
though here the compressibility of the air is crucial. Evans (1982) showed that
close analogies exist between theories for oscillating rigid bodies and for
oscillating surface pressure distributions in the context of wave-energy extraction
and in this paper we develop the problem in a manner analogous to that used to
describe wave reflection by oscillating rigid bodies in Evans & Linton (1989) in the
context of breakwater design theory.

FORMULATION
The problem will be solved using classical linear water wave theory and all
motion will be assumed to be simple harmonic in time with angular frequency w. Thus
there exists a harmonic velocity potential
B(x,y,t) = Re{4(x,y)e"**%) (1)
The pressure in the chamber is
Pe = Pa + pgd + P(t) (2)
where P(t) = Re{pe~'“*}, p. is atmospheric pressure and p is the density of the
fluid. A simple application of Bernoulli's equation shows that

K¢ + ¢y = 0 on the external free surface (3)
and K¢ + ¢y = - %gp.on the internal free surface (4)

where K = v?/g.
We take the incident wave to be given by

ig hk (h- —1kx
r = JEhs CORBUY) o (5)




that is,from x = + w, where k(real) satisfies ktanhkh = K. The reflection and
transmission coefficients for this problem will be denoted by R,and T, respectively.

In order to solve this problem we decompose it into a scattering and a radiation
problem. Thus we put

¢=¢s-j,—gﬂ¢g (6)

where ¢s is the solution to the problem which has K¢ + 4, = 0 on the internal free
surface having reflection and transmission coefficients R and T respectively, and ¢z
satisfies K¢ + ¢y = 1 on the internal free surface and there is no incident wave.
Thus ¢z is the solution of a symmetric radiation problem and we assume

gz ~ As Qggggﬁ%ﬁXl e*'¥X a5 x — . (7)

The relationship between T,, T and As is

KAs

TI:T—ng.

(8)

Let the volume flux across the internal free surface be ¢(t) = Re{qe™'®*}. Then

a
4z a0+ qo= [ fxd)ds (9)
-a

with the obvious decomposition. The volume flux for the radiation problem can be

decomposed into components in phase and in antiphase with the pressure fluctuation
P(t). Thus

qr = - (B-iwd)p. (10)
Finally we consider the gas dynamics.
Assuming isentropic flow in the gas we have

Ee Pedl=- P (11)

where Vo, = 2a(b+d) and 7 is the ratio of the specific heats.
Use of (8), (10), (11) and the equivalent of the Haskind relation for this
problem leads to

n - 1(f] (2

where C = (A-Vo/70)w/B and x = Im(R/T). This is analogous to equation (28) in Evans
& Linton (1989) though the signs are different due to the different time dependence

used. In order to calculate T, therefore we must first compute A, B, T and x and
1O




this can be done using the method of matched eigenfunction expansions. This method
was used by McIver (1985) to solve the scattering problem for d = 0. When d # 0 the
method is rather more complicated due to the need to use different sets of
eigenfunctions in the two regions.

DISCUSSION

Amongst other results Ikeno et al (1988) claim that the clearance, b + d, has
little effect on R, and T,. Our results suggest that this is not the case and Fig 2
is an illustration of this. For these calculations a/h = 4, d = 0, ¢/h = % were
used. The solid curve shows the transmission coefficient when there is no top on the
chamber and then the effect of having different chamber heights is shown. From (12)
we see that as b — ®, 0 — - and thus |T,| — |T| and thus for large values of b we
expect little effect. However from the figure it can be seen that values of b of
around 50m are required before this limit becomes valid. It is also clear that small
values of b cause relatively little change in the transmission coefficient |T,|.
However for b ~ 15m the transmission coefficient is greatly reduced over the whole
range of wave frequencies. (Kh = 0.2 corresponds to A/h ~ 14 and Kh = 2 corresponds
to A/h ~ 3). Results showing the effect of varying the other parameters in the
problem including the motion of the internal free surface will also be presented.
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DISCUSSION

King: In the isentropic flow, have you linearized the effect of the water on the gas to
(acoustically) small disturbances?

Linton: Yes.

King: In acoustics, work is done compressing the gas. How is this energy loss related to
L=|Ri*+ | =1 (A)

in the waves?

Linton: The form of the gas law used implies that the net work done over a cycle is zero,
and so (A) is satisfied. There is no mechanism for any dissipation to occur.

Grue: What is the result for |T}] if one places a fan on top of the open breakwater, with

a damping mechanism? In this case, how large may the total damping be, i.e. how small
will L be?

Linton: With a fan on top, we have a model of an oscillating water column wave-power
device. Because of the symmetry of the plates, the smallest value for L is %, with one
quarter of the energy being reflected and one quarter transmitted. Depending on what
is required, it ought to be possible to achieve a desired transmission by varying the fan
characteristics.

Eatock Taylor: For an appropriate range of parameters, the internal free surface acts as
a rigid plate. Have you considered using one of the diffraction-radiation programs to solve
this problem, i.e. by assuming a radiation mode in which the rigid plate oscillates while
the rest of the structure is fixed, and vice versa?

Linton: Yes, but we have not yet done it. It would be interesting to determine the range
of parameters for which the rigid piston model provides a good approximation to our more
accurate solution.

Greenhow: How big is this device when Kk ~ 1.07

Linton: Kh = 1 might correspond to waves of period =~ 7 seconds on water of depth 10m,
which would give a body dimension of ~ 5m.

Greenhow: Have you considered oblique waves with internal walls, or vortex shedding as
in (1]?

Linton: Both oblique wave incidence and vortex shedding would have to be considered
in any application, but here we were simply concerned with seeing whether the idea could
work and so we have kept things as simple as possible.
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