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Recent studies by Kim and Yue [1] indicate a pronounced effect on drift excitation forces
when the interaction effect between incident wave components with different directional angle
is taken into account. The major consequence of these investigations are that simple super-
position of drift contributions from different incident wave angles in realistic sea conditions,
may not be adequate for the prediction of slowly varying motions. The superposition principle
must be considered as state of art in the hydrodynamic community. Kim and Yue's studies,
among some surprisingly rear others, have motivated the author to further develop theoreti-
cal methods for computing the second-order directional interaction terms in a more extended
hydrodynamic analyses.

The problem of directional interaction have been addressed by a stepwise methodical de-
velopment:

1.
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An exact function representation of the mean drift forces and moment in monochromatic
(single frequency) bidirectional waves on an elliptical shaped vertical cylinder. Infinite
water depth is assumed. The effect of the complicated second-order wave velocity
potential is without relevance for this formulation.

. A hybrid panel formulation valid for low current velocities in bidirectional and con-

sequently bichromatic waves, refer [2] for unidirectional waves. Here, we simplify by
assuming single frequency of encounter induced by dual incident wave components on
mean forces. Consistently, the effect of the second order wave potential can be neglected.
Velocity dependent forces and moments in six degrees of freedom are computed. Hence,
wave dependent damping terms are obtainable.

. A general second-order force and moment formulation in bichromatic (different fre-

quency) bidirectional waves on an elliptical shaped vertical cylinder. Finite water depth
is assumed .The second order wave velocity potential is included by applying Green’s
theorem on a 3-D body. Second order quantities can be substituted by first order quan-
tities . And finally, first order quantities can be superposed and interaction terms can
be extracted.

Simulations and spectral methods in combinations with more exact statistical formula-
tions are investigated. The main goal is to develop rational methods to estimate slowly
varying responses in multidirectional seas within a reasonable CPU cost. Crucial wave
conditions are shortcrested seas with arbitrary directional spread or unidirectional com-
bined wave systems as storm and swell from different directions.




5. Experimental tests to validate computation of interaction terms on mean wave forces
on a realistic floating ship hull. Most of the tests will be performed in bidirectional
regular seas generated by running two wave generators simultaneously. In addition, it
will be attempted two verify the importance of the interaction terms on the slowly vary
response in irregular multidirectional seas by performing tests in shortcrested seas and
cross seas with overlapping frequency regions.

The last three items will not be further commented since the considered methods are still
under development.

One can argue that the above mentioned basic formulations even in single directional waves
are not well enough established to justify further extension. This is why cross checks with
even complicated exact solution are considered extremely important, especially for validation
purposes.

In monochromatic bidirectional waves the mean drift force can be described by, refer Kim
and Yue [1],

?; = A%‘Dill + AlA;Dilz + A2A;D521 + AgDiw (1)

where F, is the mean force or moment in freedom of degree no. 7, A; and A, are the
frequency and directional dependent complex wave amplitudes for incident wave direction no.
1 and no. 2 and D,, is the corresponding quadratic transfer function. Note the symmetry
relation D;, = D; The first and the last term in equation 1 represent superposed isolated
drift force contributions, while the second and third terms represent nonlinear phase dependent

interaction.

In addition to the drift forces in X and Y direction, as studied by Kim and Yue [1], it has
been essential to study theoretical methods for the drift moment around the vertical Z-axis on
directional sensitive bodies. A elliptical shaped cylinder was selected since exact solutions
can be found in the X-Y plane. The elliptical eccentricity can be varied from a long ribbon to
a circle.

The problem will be formulated in elliptical coordinates as defined in figure 1. The usual
large volume body assumptions ideal fluid and incompressibility are applied. Laplace’s equation
and the ordinary boundary conditions on a fixed infinitively long cylinder can be substituted by
elliptical coordinates after separation of Z- dependent depth functions. The 1. order diffracted
velocity potential solution is expressed in terms of series representation of Mathieu functions
of different type and order, refer Chen and Mei [3]. An asymptotic far field representation of
the diffracted velocity potential is also applied. In addition to elliptical coordinates ({,7) and
polar incident wave angle 8, see figure 1, the arguments to the Mathieu function solution will
include the wave length versus interfocal distance ratio as expressed by the Mathieu parameter,
q = (kh/2)?, where k is wave number and h is interfocal distance defined by h = /(a? — b2).
When the confocal ellipse attains a concentric circle, the diffracted velocity potential becomes
the classical solution as worked out by MacCamy and Fuchs. Note that no frequency solution
exists when k = 0. But it is possible to study solutions with a h value close to zero.

The quadratic transfer functions for drift forces and moment are obtained by integration
the 1. order velocity potential cross terms expressed by Mathieu functions, up to second
order in wave amplitude. The cross terms are obtained by substituting the total 1.order wave
potential with p = A} + A2¢}. Two alternative methods are applied, a far field integration
and a near field or direct pressure integration.
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By using momentum conservation Newman [4] has derived expressions for the drift force
moment in terms of the Kochin function or far-field velocity potential of the body. The Kochin
function is directly related to the diffraction potential in the far field and can be substituted by
the far field Mathieu function representation (Chen and Mei [3]). Ellipses tend to circles far
away from the body so (£,7) are substituted by the polar (R, 8) coordinates in the Mathieu
functions. With a consistent far-field formulation as Kim and Yue [1], a new quadratic transfer
function expression for the drift moment around the vertical Z-axis has been derived.

The direct pressure integration method is based on substituting velocity potentials, X and
Y dependent derivatives and integrals by elliptical coordinates. The mean second order force
is found by taking the time average over one wave period. The effect of two directional wave
components is superposed. Cross terms are extracted and integrated correctly to second order
in amplitude on the wet surface. The resulting quadratic transfer functions for the drift force
and moment are found. Here, we can illustrate the method by writing the expression for the
finale quadratic transfer function of the drift moment, Dg,,,
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where g;(£o,7) is a Mathieu function representation of the velocity field from wave direction
no. 1 at the wet body surface { = &,. At this stage, no closed form solutions of the  dependent
integrals have been found. The near field integrations are numerical more challenging than
the far field integrals due to a more complicated and rapidly oscillating wave field close to the
body surface. An adaptive quadrature algorithm was applied to ensure controllable accuracy.
However, due to the analytic formulation, the far field and the near field method should give
the same results except for inaccuracies in the involved numerical integrations. Numerical
results for the far field solution were compared with the near field solution. When imposing
an absolute error tolerance of 1078 (double precision) the two methods corresponded with an
accuracy of more than six decimals.

In table 1 examples of results for the quadratic transfer function are presented. The
body considered is the the fixed infinitively long elliptical cylinder , as shown in fig. 2, with
breadth length ratio 5:1 (a = 0.5, b = 0.1). By considering one frequency in the diffraction
dominated region, ka = 1.0, and some few directions #; = 0,45,90 (deg), a surprisingly large
interaction effect can be illustrated. The results show that interaction effects on the moments
are especially large for the wave directions 0 and 90 deg where no moment is induced by one
of the two directional wave components isolated.
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Figure 1.
Coordinate definition elliptical cylinder. The parameters a and b
denote semi-major and semi-minor axis respectively. h denotes con-
focal distance. i
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(deg] | [deg] || [N/m?] | [N/m®] | [N/m’] | [N/m’] | [Nm/m’] | [Nm/m’]
00 [0.0 [0.0277 |0.0000 [0.0000 [0.0000 |0.0000 | 0.0000
0.0 |45.0 | 0.0250 |-0.0037 |0.0392 |-0.0167 |-1.3529 | 0.6751
0.0 {90.0 [ 0.0147 |-0.0654 |0.0583 |0.0270 |-1.9253 |1.0283
45.0 | 45.0 || 0.1911 |{0.000 |0.2641 |0.0000 |-2.0714 | 0.0000
45.0 | 90.0 | 0.1378 |0.1786 |0.4327 |-0.0836 |-1.4264 | 0.8994
90.0 | 90.0 | 0.0000 |0.0000 |0.7066 |0.0000 |0.0000 | 0.0000

Table 1.

Real part and imaginary part of the complex quadratic transfer function for drift forces
and moment on a vertical elliptical cylinder with breadth length ratio 5:1 (a = 0.5,b = 0.1).
Fixed wave length ka = 1.0 and different wave headings 6;. D, ; denotes force in X and Y
direction respectively and Dg denotes moment around the Z-axis.
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