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INTRODUCTION

The proliferation of supercomputing resources is causing many researchers in ocean engineering to contem-
plate the routine computation of fully nonlinear, three-dimensional, free-surface-wave/body interactions.
The achievement of this particular goal may be some years away, but many of the theoretical and numerical
issues have been successfully addressed in two-dimensional and axisymmetric model problems. In spite of
the available supercomputing power, a key difficulty of the problem which remains is the substantial com-
putational effort required for even a modest problem. The goal of the research described here is to develop
a fast algorithm for the computationally “hottest” part of the problem. A constraint on the design of this
algorithm is that it must be suited to the fastest architectures likely to be available in the near future.

N-BODY PROBLEMS

The algorithm we are developing for these free-surface problems is a derivative of those developed for the
simulation of the interactions of many bodies common in celestial mechanics, molecular dynamics, and
plasma physics. Consider an “N-body” problem for point charges:

-0(10%) particles of known charge are distributed in some fashion in a two- or three-dimensional space;

~their pair-wise interactions are governed by Coulomb’s law (the potential is proportional to log» in two
dimensions or 1/r in three dimensions);

—at some reference time, the particle positions and velocities are known, and we wish to know the positions
and velocities for subsequent times.

If this problem is solved in the obvious O(N?) manner, then at each time-step in the simulation we would
construct an N x N matrix of influence coefficients, apply this matrix to the vector of known charges to get
the potential at each particle, and use this to update the particle positions and velocities. Note that there
are two processes which require O(IN?) effort: construction of the matrix, and the application of this matrix
to the vector.

It is easy to see that the computational effort required by this simulation may be reduced to O(N log N) by
sorting the particles in such a way that the influence of a group of particles, all of which are in some sense
far from a particular particle, may be approximated as the influence a single particle located at the centroid
of the group and having a charge equal to the sum of the charges of the particles in the group. Consistent
approximation allows distant groups to include larger regions of the space than ones comparatively closer to
the particular particle. Programs which make use of this idea bear the generic name of “tree codes” because
of the nature of the sorting inherent in their data structure.

A series of papers published by L. Greengard and V. Rokhlin [(1987), for example] demonstrated that the
computational effort of two-dimensional N-body problems could be reduced to O(N). Besides the reduction
in computational effort for large N, their method has the additional benefit that it is exact. The method
makes use of a collection of theorems and lemmas which establish the validity of representing the potential
due to groups of particles by multipole expansions, of shifting the centers of these expansions and of rewriting
these expansions as power series.
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The following is an outline of the method:
—the space occupied by the particles is mapped to a unit computational square;

—the square is subdivided into four “child” squares, each of these is subdivided, and so on, building a tree-like
hierarchy of meshes;

—in each “leaf” (finest grain square), the influence due to the particles therein is represented by a multipole
expansion about the center of the square which is valid outside the smallest circle which contains the square;

—working toward the root, in every square at every level above the leaves, the multipole expansions from the
child squares are shifted to the center of the “parent” squares and summed;

—at a coarse level, the multipole expansions are rewritten in their valid regions as power series about the
centers of squares in those regions, and these series are valid inside the smallest circle which contains the
square;

-working toward the leaves, these power series are shifted from the centers of the parent squares to the
centers of their children;

~finally, at the leaves, the power series may be evaluated to find the total potential at each particle.

Note that in this method, neither of the O(N?%) operations ever take place: we do not form the matrix of
influence coefficients and we do not directly apply any matrix to the vector of charges.

For a specified tolerance in the accuracy of the computation, the highest level of refinement of the hierarchy
of squares and the number of terms to retain in the expansions may be determined a prior:i. Neither of
these parameters depends on N, a fact which guarantees that this is an O(N) not O(N log N) method. The
extension of this method to three-dimensions is demonstrated in Zhao (1987).

AN O(N) ALGORITHM FOR LAPLACE’S EQUATION

Consider the water-wave/floating-body problem we would like to be able to solve: the domain is unbounded,
the free-surface is nonlinear (with ambient waves), the body geometry and motions are unrestricted and a
potential flow is assumed . Our approach to a computational solution is to restrict the nonlinear domain to
a region close to the body with the remainder treated to some appropriate order by a perturbation scheme.
In the nonlinear region, the flow is governed by Laplace’s equation, a nonlinear free-surface condition,
a Neumann condition on the body, and a matching condition on the boundary enclosing the nonlinear
domain. The technique of solution then consists of numerically integrating the evolution equations on the
free surface and using the updated free-surface quantities, and body and matching boundary conditions, to
solve Laplace’s equation at each time step. Almost all of the computational effort will be expended in the
solution of Laplace’s equation.

We are interested, therefore, in developing a rapid z{lgorithm for the solution of Laplace’s equation. We can
use the techniques derived for the N-body problem if we reformulate the elliptic boundary value problem
as a boundary integral equation (BIEM). The boundary value problem is recast (via Green’s theorem and
the Green function G = 1/r) as coupled Fredholm equations, each on one of the boundaries of the nonlinear
region. Unlike the linearized problem, here the resulting equations are not entirely second kind, because the
free-surface condition is of Dirichlet-type. Now we invoke some cubature scheme, transforming the integral
equations into a system of linear equations which may be solved numerically. Without regard to detail, we
are confronted with the basic problem of solving the system of equations: AX = b, where A isan N x N
matrix. Let us assume that this system may be solved in considerably less than N steps by a suitable iterative
method. This is not a trivial assumption, but is a separate topic of our research about which we have reason
to be optimistic. At this stage we have an O(/N?) method because, in general, each step of an iterative method
consists of applying the matrix A4 to one of a recursively generated set of vectors, say §. But matrix A is very
much like the matrix of the N-body problem. It consists of influence coefficients calculated from harmonic
functions, regardless of the details of how we discretize the problem, and consequently the underlying ideas
of the O(N) algorithm may be applied to BIEM. Rokhlin (1985) illustrates this idea; however, this paper is
misleading on critical aspects of the implementation.




There are important differences between a BIEM solution of Laplace’s equation and an N-body problem.
One of these is that in their exact forms, the BIEM is an integral equation with a singular kernel, but the
N-body problem is merely a discrete sum. Another is that BIEM may reduce the dimensionality of the
problem by one, but the theorems and lemmas of the O(N) N-body algorithm apply in the original space
of the problem.

Consider the model problem for which we have written an O(N) code. We intend to solve the two-dimensional
“wave-maker” problem, solved successfully by Vinje and Brevig (1980). In this case, the problem is formu-
lated as a Cauchy integral equation for the complez potential, with the real part (the potential) unknown
on the solid boundaries and the imaginary part (the stream function) unknown on the free surface. If we
choose an N-segment trapezoid rule for the quadrature, the discrete problem appears to be exactly a two-
dimensional N-body problem with pair-wise interactions governed by 1/(z; — z;). This quadrature is an
ideal choice for the implementation of the O(N) algorithm, but it is poorly suited to integrals with singular
kernels. A more suitable, albeit more complex, procedure is to discretize the problem as is commonly done in
the aero/ocean engineering community: with a panel method. Exact integrations of the kernel over panels,
and special cases such as self influences and adjacent influences, increase the effort required in computing
the multipole expansions for the panels in the leaves, but the efficacy of the panel method in treating these
integral equations is well established.

Another aspect of tailoring the O(N) idea to BIEM is to employ the “adaptive” algorithm used for sparse
configurations of particles. Once we have discretized the boundary of the wave-maker problem, perhaps with
linear segments, the segment ends (nodes) correspond to an extremely sparse array of particles. If we were
to build a hierarchy of squares without regard for this sparsity, most of the squares would contain no nodes.
Hence the code we have written is adaptive, it produces a tree of squares in which none are empty. This
is controlled during the sorting of nodes by never including empty squares and setting a maximum for the
number of nodes in any unsubdivided (childless) square.

The fact that the influence coefficients are not computed from simple functions such as 1/(z; — z;), but
rather the integrals of such functions over panels, and the fact that the data structure is not a complete tree
increase the computational effort of the O(N) algorithm, on a per-node basis, in the BIEM case over that of
the N-body case. This does not, however, negate its efficiency relative to an O(N?) method for the BIEM.

CONCLUSION

In chosing a two-dimensional Cauchy formulation as a model problem we have eliminated theoretical and nu-
merical uncertainties not related to the O(/V) method. For example the treatment of the solid-boundary /free-
surface intersection is well established; and the Cauchy formulation is second-kind thereby guaranteeing an
iterative solution. We are using this problem to learn how fast the O(N') algorithm is, and how the desired
accuracy of the solution affects the time required for its calculation. Preliminary results indicate that for this
problem it is faster to compute the application of matrix A to vector § by the O(N) algorithm if N > 102.

We are intending to write an adaptive O(N) algorithm for the Green’s theorem formulation of the three-
dimensional problem. Along the way, we will write a code for the two-dimensional Green’s theorem formu-
lation, and we will investigate the implementation of these schemes on parallel architectures.
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DISCUSSION

King: In the discretization of the principal value integral you appear to expand the singular
kernel about a collocation point. As the mesh grows finer, the nodal points move closer
to this collocation point causing you to take more terms in the expansion of the singular
integral kernel in order to retain accuracy. What implications does this have for O(N)?
Does it imply an accuracy of O(1/N)?

Korsmeyer: The philosophy underlying our O(N) work is that the iterative method and
the O(N) technique for applying a matrix to a vector will not require a modification of
the mathematical approach to solving the potential problem. The water-wave community
has established a preference for solving Laplace problems by panel methods for a number
of well-founded reasons. In the context of that general type of solution method, O(N) will
not further restrict your attack.

In reference to your specific point, the O(N) scheme should retain the underlying
convergence rate of your method had you simply built a matrix and solved the system
by LU decomposition. Take our Cauchy integral formulation for example. For panels
‘close’ to a field point, we use the exact formula for the integration of a linear variation
of the unknown over a straight boundary segment ¢ la Vinje and Brevig (1980), where
‘close’ means panels and field points in the same or neighbouring childless boxes (leaves
of the tree). Otherwise, that exact integration formula stself is represented by a multipole
expansion, which is accurate to as many decimals as specified.

The parameters which will affect the convergence rate (number of terms in the ex-
pansion, tolerance for the iterative method, and what is ‘close’) must be specified in a
consistent manner to achieve the desired accuracy with efficiency. We have much to learn
on this subject.

Tuck: Regarding parallel architecture, surely benefits are available without going to as
many as N processors? You might get benefits from as few as M, where M = number of
tree levels.

Korsmeyer: I do not mean to imply that we need O(N) processors. However, I think
that the mapping of this algorithm to a parallel architecture is on a box-wise basis, not
a level-wise basis. This is because the algorithm moves up and down the tree-like data
structure unable to process a level until it has processed the one below or the one above.

Cao: To sort particles, you need many IF statements in the computer code. This prevents
that part of the code from vectorization, and can slow down the program significantly.
Does it pay off?

Korsmeyer: First, a key point: I do not think vectorization is an important issue. Parallel
architectures are of interest here. If someday I can work on a massively parallel machine
with each processor having a vector architecture, then I will be interested in vectorization
of modules of this code.

For the O(N) code, building the data structure should work on a parallel architecture
just as well as performing calculations on data in that structure once it is built. In both
cases, for any given box, a processor need only know about the one parent box and the
up-to-four child boxes. With the ‘adaptive’ algorithm, there are exceptions to this; a fact
which poses interesting challenges.
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Schultz: You stated that there is a significant amount of ‘accounting’ in the development
of the algorithm. Does this housekeeping requirement challenge the programmer or the
end user? In other words, how user friendly is this code you are going to give us?

Korsmeyer: Like anyone writing code, I have to answer: ‘very friendly’. If you are
using an iterative method, and you call a routine, say ‘MULT’, which applies your matrix
to a vector, you simply call the O(N) routine instead. You have previously inserted
in the O(N) code your own ‘close’ evaluation routine, and your own expansion of the
influence coefficient(s). These routines change depending on your choice of singularities,
your assumptions about the representation of the unknown(s) on the boundary, and your
representation of the boundary itself. :

Grue: What happens to the code when the waves you are computing are breaking? In the
same context, how do you model the intersection between the free surface and a floating
body, and the effect of local breaking waves?

Korsmeyer: In the 2-D model problem using the Cauchy integral formulation, all of
the hydrodynamic/mathematical considerations are handled as in [1]. As I stated above,
the O(N) method is independent of these considerations. The method is intended as a
powerful tool which will allow rapid and efficient exploration of hydrodynamic phenomena
such as those you mention: breaking waves and wave-body intersections.

Kleinman: How do you decide which points go in which box?

Korsmeyer: The nodal points are allocated to boxes in a typical tree sort. This, however,
does not require O(N log N) effort because there are not O(log V) levels. This is due to
the fact that the sort is not ‘exact’ in the sense of, say, sorting words for a dictionary. To
see this, consider that we have set a tolerance for the computation: p. Then no two nodes
can be distinguished if they are closer than p, and hence no box can have dimension d less
than p. For a unit computational domain, the dimension of a box is simply a function of
its level, I. Counting up from the entire domain as level I = 0,

d=2""
From this equation, we find that at finest grain, where d may equal p,
lmaz; = Ilogz pl-

So the number of levels is independent of V.
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