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SOME ASPECTS OF FREE SURFACE FLOW OVER A SUBMERGED BODY

A.C. King, Department of Mathematics, University of Kecle, Keele, ST5 5BG

The steady two-dimensional free-surface flow of an incompressible,
inviscid and irrotational stream of fluid which is bounded below by a rigid
bottom and obstructed by a submerged body is considered. The submerged
body is of Rankine type formed by a source and a sink of equal strengths M
and separated by a distance S. The body may be totally immersed in the
fluid or could constitute a bump on the otherwise flat bottom but may not
penetrate the free surface. A Cartesian-coordinate system (X, Y) has its
origin on the bottom of the stream at a distance D below the source. Far
upstream of the body the flow is uniform with speed U and depth H; the
restoring force in the negative Y-direction is gravity. These assumptions
allow the introduction of a velocity potential @ and stream function ¥. The
stream function is chosen to have the value 0 on the free surface and hence
the value —UH on the rigid bottom. The condition on the free surface
where the pressure is uniform is obtained from Bernoulli’s equation. Within
the fluid the complex potential W =@ + i¥ s analytic.

The problem is non-dimensionalized using the transformations
X+iY Co4i P +iV¥

H , w=g@+1y UH

z=x+iy= (1.1)
The geometry of the non-dimensional flow is shown in Fig. 1(a), where
d=D/[H, s =S/H, m = M/UH. The Bernoulli condition on the free surface
can be written

1Fq?+y, =iF?+1, (1.2)

where F = U//(gH) is a Froude number, ¢ is the fluid speed and ys = ys(x)
is the free-surface elevation. The Rankine body formed by the source—sink
combination is assumed to have a smooth profile, and a stagnation
streamline will run from —® to 4+ passing through the points S, on the
body.
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FiG. 1(a). The non-dimensional physical plane; §, are the front and rear
stagnation points and 1m respresent the source and sink
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Fic. 1(b). The transform &-plane and the corresponding points

It is convenient to transform the a-priori unknown region occupied by the
fluid onto the upper half of the {-plane where a complex potential may be
found. The transformation used is of the type used by Bloor (1) and King
and Bloor (2, 3). With the correspondence of the physical and trans-
formed planes shown in Figs 1(a) and 1(b) the transformation takes the

where {=E&+in and 6(¢) is the angle made by the tangent to the free
surface with the x-axis at the point which corresponds to §=t¢. When & is
real and positive the integral in (1.3) becomes a principal value together
with a contribution i6(&) which ensures that dz/d{ is an analytic function of
€. It is convenient to write

- form

1 ™ 6()de
po_ L[ 0@ar
.7l'¢=o -1t

where the bar through the integral sign denotes the Cauchy principal value
of the integral. On the free surface £ >0,

dz 1

—=—— P +1i6}. .

dE Jrgexp{ i0} (1.4
In the {-plane the flow is that of a sink of strength 1/x at the origin

together with a source and sink of strength m at the points §, and §,,

together with an image system, giving a complex potential

w = _,lrlogéﬂ"m{log(é— £, +log (£ —E,) —log (L — &) —log (& — &)}
(1.5)

The fluid velocity on the free surface is found from (2.4) and (2.5) to be
u—iv=ge®={1-¢eL(, &)+ eL(E, L)} exp {(—P —i0}, (1.6)

where O is the angle made by the fluid velocity, &€ =2am, and for brevity
the functions L(&, &), L(E, §,) have been introduced with

L =45 g )
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Equation (1.6) shows that the fluid velocity is directed along the tangent to
the free surface as is required and also gives an expression for the fluid
speed q. The parameter € is seen to be the ratio of the flux due to the
source to the mainstream flux and controls the thickness of the Rankine
body. From this stage it is more convenicnt to work with the variable
r=—1/mxlog &, which is the free-surface velocity potential due to the sink at
the origin, rather than &. Equations (1,4) and (1.6)are substituted into the
denivative of the Bernoulli equation (1.2) and after a little algebra the
free-surface condition can be put in the form

Fz{l —&el(r, £,) + €L(r, Cz)}{-’meth(’: §2) — wee™7Q(r, &) +

+f1—f {1 eL(r, &) + eL(r, Cz)}} ~e*’sin =0, (1.7)

where
f_[;

d&

= 0(s) ds
(s —r) __ 1 *

6(r)=06(E), Q=-- and P= —)[

5= —— e

This is an exact formulation of the free-surface flow around a submerged
Rankine body as a nonlinear integrodifferential equation for the free-
surface angle 6. Equation (1.7) can only be used in a semi-inverse manner
to describe the flow around a general submerged body, as the specifications
of the four quantities F?, g, &, &, which appear in (1.7)do not describe the
body geometry in the physical plane but give rise to a body geometry which
is only determined after the solution of (1.7) and integration of (1.3)subject
to 2(&,) =id, z(&,)=s+id.

Finally the determination of the body shape is carried out by first finding
the position of one of the stagnation points S in the &-plane by solving
dw/d€ = 0 which leads to the equation

l+-£-{1+1 ! 1}0 (1.8)
& 218-¢8, C'—gl E—-28, C“fz—' )
This quartic equation has two roots, £}, 7 say, in the upper half-{-plane
and two corresponding conjugate roots in the lower half-plane. Substitution
of either of these into the expression(1.5) for the complex potential gives
the value of the stream function on the body whose equation is then
determined as the solution of

Im {w(&) —w(t¥)} =0. : (1.9)

Because of its analytic complexity this equation is solved numerically to
produce the coordinates of the body shape in the {-plane. These are then
transformed to the physical z-plane using an integrated version of (1.3):

z=—ljc cxp{——fi_ é—(s—)——d—y}é (1.10)

=—1+i0 e —1J)t

Some numerical experimentation showed that unless arg (§,) = arg (&5)
the body shape is not closed, with the front and rear stagnation points lying
on different streamlines.
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FiG. 2. Supercritical flow with F=2-0, £ =20, {, = ~1+i0, ;= —0-5+i0
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Fic. 3. Subcritical flow with F=07, £=020, £,=~0-309+i0-951,
Ly = —0-141 +i0-434
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FiG. 4. Transcritical flow with , = —0-707 + i0-707, ¢, = ~0-146 +i0-146
and € =0-50
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DISCUSSION

Peregrine: What are the conditions for the streamlines to form a closed body around the
source and sink?

King: The condition is
arg((1) = arg(Cz). (A)

It is easy to show that there is no flux of fluid between the source and sink if (A) holds.
This implies that there is a closed streamline surrounding the Rankine body formed by
the source/sink combination.

Peregrine: Have you calculated the force on an obstacle?

King: Yes. A formula for the drag on the body is found by considering the momentum
flux through a control volume which starts far upstream of the body, where the flow is
uniform, and ends far downstream, where the flow is either uniform (supercritical case) or
one-dimensional such as under a wave crest or trough (subcritical case). In the transcritical
case, the drag on the body is precisely the maximum wave drag predicted by Benjamin &
Lighthill [1].

Peregrine: Have you calculated flows over long slender obstacles?

King: Yes. By letting the sink position go to infinity, I have obtained body shapes which
are similar to a semi-infinite step on the bottom.

Peregrine: Have you any indications that finite obstacles may exist with zero waves and
drag?

King: Yes. Linear theory predicts that when the body length is a multiple of the linear
wavelength, given by F%k = tanh k, the wave amplitude is zero. In the numerical nonlinear
calculations, it was found that changing the body’s length resulted in the wave drag on the
body passing through a sequence of maxima and minima. The minima, although small,
were never zero.

Wu: Please comment on your work in relation to Tuck’s paper [2] on dipoles submerged
beneath a free surface.

King: As I recall, Tuck showed that at leading order the body formed by a dipole was
closed, but at second order it was not. Presumably, if Tuck’s work is extended to higher
orders, a different conclusion may be reached.

Wu: If I give you a distribution of sources and sinks, can you tell me if it will generate a
closed body?

King: In my work, the body is closed if (A) holds. This is really a symmetry condition
in the transform plane. I would expect that these symmetry results would apply to more
complicated source/sink distributions.
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