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In this work we study the linearized wunsteady motions of two
dimensional cylinders at forward speed. A major difficulty in solving this
problem is the presence of the steady potential in the free surface
condition for the unsteady potentials. For bodies submerged below the free
surface, a simple treatment 1is to ignore the steady potential in the free
surface condition. Here, a method 1is developed to solve the unsteady
velocity potentials while the disturbance of the steady potential is
included in all boundary conditions. The results obtained suggest that the
steady potential has a significant influence. Neglecting its disturbance
in the free surface condition would underestimate the wave loadings and
dynamic responses of the body.

The method used here is the same as we suggested in the 4th
Workshop (1), but results presented there did not include the disturbance
of the steady potential in the free surface condition. The idea of the
method is to expand the unsteady velocity potential into a zero-speed
solution plus a forward speed correction term, which is 1linearly
proportional to the forward speed. Any other terms in the expansion are
assumed to be negligible wunder the small forward speed condition. The
boundary value problem is thus solved in terms of a zero-speed problem and
a forward speed correction problem. The free surface condition for the
latter contains terms involving the steady potential as well as the
zero-speed unsteady solution. Green's second identity is applied to form
boundary integral expressions, and the pulsating source potential is used
for both problems.

1. Statement of the Problem

A moving Cartesian coordinate system is used to describe the
boundary value problem of a body moving at forward speed U in waves. The x
axis is defined pointing in the direction of forward speed and the z axis
is defined pointing upwards with z=0 on the mean free sgggace. Let the
velocity potential be denoted in a complex form & =~ Re[de ] with w the
encounter frequency. Up to the first order of the Froude number, the
boundary conditions for the diffraction potential (¢7) and the radiation
potentials (¢j, j=2,3,4) may be written as follows:
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where w = wo-UkOcosﬂ - wo(l-rocosﬁ), with Wy ko the frequency and

wavenumber of an incident wave at an angle of g8 (f=0 or = only in 2D);

k = wz/g; and 1=Uw/g=ro(1-rocosﬁ), with r0=UwO/g and w2=gk The steady

potential é is taken as the "double-body" flow. The ¢ ig thg free surface

condition represents each of the three radiation potentials or the sum of
the diffraction potential and the incident potential. The radiation
conditions may be deduced from  the asymptotic expression of a Green

function given by Haskind (2).

2. The Pertubation Formulation

As outlined in Reference 1, the problem is solved by expanding it
into a zero-speed problem and a forward speed correction problem. Each is
solved in turn, on the basis of the hypothesis that the velocity
potential ¢j can be expanded into a series of the form:

¢j - ¢j0 + 10¢j1 + ..

In particular, the free surface condition is expanded into:
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Following the procedures outlined in Reference 1, the zero-speed potential

is written as:
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The foward speed correction term for head seas (B8=r) is written as:
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where (for 2D)
J = 2i[J G(§§19-1k0¢j0+Qj)4dS - (G¢j0)+m]'
F (11)

The expression for the following sea (B=0) is similar, but different in
some signs. G used above i the pulsating source potential. Multipole
expansions are used to compute the zero-speed potential in the J-integral.

Coupled numerical methods are used. Details may be found in Reference 3.

Computations including or not including the Qj terms in equation
(8) have been made and compared. The results presented in Fig. 1 to Fig. 8
are for a submerged circular cylinder with its axis one and half radii
below the free surface. The results show that neglecting the Qj terms
underestimates variation of added mass, damping, exciting forces and
responses. Computations for a  floating semi-circle and a floating

rectangle have also been carried out.
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Fig. 7 Sway response

Fig. 8 Heave response




DISCUSSION

Kleinman: Is there any rigorous justification for the particular form of the perturbation
used? For example, has it been established that the potential has a convergent Taylor
expansion in powers of 7y or that the expansion is asymptotically correct, i.e.

lim L {4 — djo— rods} =0 ?

To —0 To

Hu: The rigour of the perturbation form used here was discussed in Reference (1), and
full details can be found in Reference (3). It has been shown that the perturbation may
not be appropriate in the far field (i.e. for radiation conditions), but it is acceptable in the
near field. In particular, the expression (10) is valid in a finite fluid domain around the
body; see Reference (3) for a rigorous justification.

Sclavounos: Have you observed the sensitivity of the linear and second-order forces upon
the @ terms in the free-surface condition? I have observed that for the diffraction problem
around a vertical cylinder, the double-body flow does not appear to enter the evaluation
of the slow-dnft damping.

Hu: Yes. As shown in the paper, the first-order exciting forces, cross-coupling added
mass and damping coefficients are all sensitive to the @ terms for a shallowly submerged
circular cylinder (h/a < 1.5). The responses are less sensitive. For floating bodies, we
have specifically investigated this sensitivity, because, theoretically, it is not justifiable to
neglect the steady potential disturbance in the free-surface condition for bluff bodies (e.g.,
the stagnation-point condition would not be satisfied).

For diffraction by a vertical cylinder, we have an asymptotic approximation for the
mean drift force in the long wave limit [1]. As discussed in [1], the presence of the steady
potential (@ terms) does not appear to influence the far-field behaviour of the diffraction
potential, because the double-body flow decays faster than the diffraction potential. The
mean drift force was shown to be insensitive to the @ terms. However, if the body is
allowed to oscillate, the answer is presently unknown.
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