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The determination of second order forces on floating or submerged bodies is an important
problem for offshore applications. The second order problem is more complicated than the
linear one due to the infinite extent of the non-homogenous free surface condition.
Previously second order problems have been solved using various integral equation meth-
ods.These methods require time consuming integration over the free surface and depend
on a highly accurate first order solution.

A different approach which avoids integration over the free surface is developed by Sclavounos
(1988).Studying two incoming waves,Fourier transform is used to derive two fundamental
second order Green functions,called the Diffracion and the Radiation Green function re-
spectivly. The Diffraction Green function corresponds to the second order interaction of
an incoming linear wave with a submerged point source and the radiation Green function
represents the second order interaction of two submerged point sources at different location
and of different frequencies.

Explicitt particular solutions ¢, that together satisfies the second order free surface con-
dition are obtained from the second order Green functions.Corresponding homogenous
potentials ¢, subject to a linear free surface condition are required to ensure that the po-
tentials ¢, + @5 satisfie the homogenous body boundary condition.

In this work we have studied the simple problem of a submerged restrained body in 2D,in
order to investigate the method. The circular contour has been chosen as a numerical ex-
ample,and the solution is compared to a previous solution by Vada(1987) using an integral
equation method.

1 The second order forces

The particular potentials ¢, are obtained by applying the Fourier transform approach
proposed by Sclavounos.As a starting point we have to use the linear wave-source Green
function in 2D expressed as the Fourier integral
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Here v¢ = v —i¢ indicates the integration path around the pole,using residue calculation. e
is a small positive parameter,Z = (z, z) is the field point and 5: (&, ¢) is the source point.
v = w?/g is the wavenumberw is the frequency and g the accelration due to gravity.

The total second order force (and moment) is found by integrating the pressure around the
body contour,utilizing the Bernoulli equation. For simplicity only the contribution from
the second order potential in the Bernoulli equation is presented below.

In the force expressions the potential ¢, is eliminated introducing an auxiliary linear
radiation potential 1; with frequency = w; + w,;.We here only write down the sum-
frequency force contributions connected to the term Z(V®®) . V&™) in the free surface
non-homogeneity, called the A-part by Sclavounos. After interchanging the order of the
integration,being legal due to the exponential decay of the integrands, typical terms for
the force may be written
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where H;(u) is the classical Kochin function given by

Hi(u) = /0% da(n; - ¢i%)6lulz—iuz (3)

The normal vector @ = (ny,n2) and nsj = (z,z) x @ where 7 is the normal vector pointing
out of the plane. S(u) may be called the “source” Kochin function and is given by
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Here o; is the linear source strength,A; is the amplitude of the incoming waves and w; is
the corresponding frequency, i=1,2.
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Here F1,F2 and F3 consists of a combination of Kochin functions. For example

F1(u,u1) = Hyi(u)S11(u1)Sa1(u,u1) + Ha;i(u)S12(u1) S22 (u,u1) (6)

with the following Kochin functions
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Similar expressions exists for F2 and F3. The force expressions are integrated by 2-point
Gaussian quadrature. The inner integrals in (5) are evaluated using a rectangular path in
the complex uj-plane.

The second order forces have been calculated for a circular cylinder for both one and two
incoming waves.For one incoming wave the results have been compared to Vada(1987).The
results agree very well with Vada’s results. In the method used by Vada it is required a
high accuracy of the first order solution which is not the case in the present method.

A cruical point is if the present method is more efficient than the standard method used
by Vada.That has not been the case in these computations. However,it seems reasonable
that the computation of the double integrals used here may be considerably effectivised.

2 The second order reflection coeficcient

It is a well known fact that the first order reflection coeficcient R; is zero for a circular
cylinder.By using this second order theory it can be proved that the same is true for second
order reflection coeficcient R,, defined as the (normalized) amplitude of the outgoing second
order free wave with wavenumber 4v.

Letting £ — —oo the particular potential ¢, simplifies obtaining only contributions from
the residues.

For the circular contour the “source” Kochin functions S;;, S3; and the other functions
with a similar structure can be shown to be zero.This is obtained by writing the linear
source strength as a Fourier series on the contour

o(a) = i (amcos(ma) + bysin(ma)) (13)

m=1

where a,, and b, are complex quantities.
We can then for instance write the Kochin function Sy, as
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where the parametrization { = —sin(a),{ = —h + cos(a) has been used.
It can now be shown that the Fourier coeficcients fulfills the relation a,, + ib, = 0,by
examening the integral equation for the source strength.But this is exactly what is needed
to prove that these “source” Kochin functions are zero and thereby it is easily seen that
¢, vanish as £ — —oo.
To prove that ¢, is zero as 2 — —oo,we write ¢, as a source distribution over the submerged
body. Writing the source strength in the form (13),we again find that a,, + tb,, = 0.
When examening the expression for ¢, as * — —oo
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with the Fourier expression substituted for oy,it is easily shown that ¢, vanish.
Hence we have proved that R,=0 for a circular cylinder.
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DISCUSSION

Palm: Based on your experience, please comment on the advantages and disadvantages
of using the method of Sclavounos.

Friis: The main advantage is that it gives explicit expressions for the contribution to the
second-order forces due to the second-order potential which do not involve an integration
of the free-surface non-homogeneity. Moreover, in these expressions, the first-order solu-
tion is not required to high accuracy. However, it is difficult to achieve a fast numerical
computation of these expressions (involving integrals), at least without further extensive
analysis.

Meclver: A comment: the result that there is no reflection at second order from a sub-
merged circular cylinder in deep water has been proved, using a different method, by
M. Mclver & P. Mclver [J. Fluid Mech., to appear].

Friis: This is very interesting. I look forward to seeing your proof and comparing it with
mine.




