K.EGGERS: On The Breakdown Of Ship Wave Ray Tracing Near The Bow.

Over a period of more than 10 years, attempts have been made to simulate the ship wave
pattern by application of ray tracing methods as developed in geometrical optics.This was
motivated from the fact that such model is certainly adequate far away, where rays degenerate
to straight lines, and through the plausible argument that over a slightly curved flow in the far
field the wave patter geometry should be determined through local features (i.e. the orientation
and the magnitude of flow) rather than a parallel flow relative to the ship as observed at great
distance. It turns out then that the direction of rays can be defined as that of the resultant of
the basic flow with a group velocity vector.

With the dispersion relation between the components of the wave number vector depending
then on the space coordinates, this vector can no longer be invariant along a ray; the construction
of rays thus becomes indeterminate, unless we specify in addition some conservation principle.
For rays thus defined, the problem becomes equivalent to determining characteristics for a
certain partial differential equation, which can be formulated and has regular solutions in the
entire part of the undisturbed free surface where the basic flow is regular. The ray geometry
will then come out independent from the Froude number.

Still it is not evident that solutions to this problem are pertinent for simulating the near field
wave pattern, even for the case of a submerged body, where the basic flow is only slowly varying
there. Note that ray tracing upstream and downstream are mutually inverse operations. Under
the linearised free surface condition U%¢,; + g¢. = 0, we know that the wave pattern admits
a formal double Fourier integral representation, which degenerates to a finite number of wave
components only after twofold application of asymptotic analysis, and the near field can not
be uniquely determined from such far field information, in particular if no upstream radiation
condition is specified. This should equally hold under the “slow ship free surface condition”
W drr + 2uvdyy + iy, + g¢, = 0 underlying the ray tracing approach. Note that Lighthill
[1] found that this problem is of parabolic nature (if effects of finite amplitude are disregarded;
otherwise hyperbolic for transverse, elliptic for divergent waves).

The relevant analysis has been formulated (A) by J. Keller [2], who even concluded that
for his class of “streamlined” ships rays must originate from the double body stagnation points
only. Whereas Yim [3] seems to have successfully calculated rays under use of this approach,
Brandsma [4] found that even through “backshooting” no rays associated with transverse waves
(as referred to the basic flow) emanating from the bow stagnation point can be found. This is
not necessarily in conflict with the calculations of Yim, who could not start his rays directly
at the stagnation point, as the wave length tends to zero there and no calculations can be
performed.

In a recent analysis, we evaluated analytical expressions for the flow around prismatic bi-
circular vertical struts and showed that the rate of change of the wave front angle along a
ray (and hence of the ray tangent via the dispersion relation) tends to infinity as the inverse
distance from the stagnation point, unless the ray is starting tangentially to the water line. If
so, the finite curvature depends of the direction of approach, being zero when approached in
streamline direction, i.e. tangentially to the ship hull. Thus even if the ray should split up to a
continuous bundle, it can carry only transverse waves in its initial stage. This insight may shed
some light on the numerical difficulties experienced by Brandsma.

In an attempt to make ray tracing pertinent even in this domain, we modified Keller’s
approach taking (A)" account of surface tension effects. Then we find some zone around the
stagnation point where no stationary waves can exist; at its boundary, only one wave length is
admitted corresponding to the minimum phase velocity under transition from gravity-dominated
to capilarity-dominated waves. But even for rays originating at some finite outward distance
from this boundary, we found that after a short stage of growth the wave length showed decay
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along the ray until the minimum of gravity-dominated waves was approached, and the ray
tracing had to be terminated.

The above situation is not essentially changed if we base our analysis on an alternative free
surface condition (A*) as advocated by the author [5] and derived independently from new
arguments by van Gemert [6]. It is the author’s conclusion that ray theory, having its origin
in consideration of wave packets under application of asymptotic tools (such as the principle of
stationary phase), is not pertinent for the near field of a ship. We should perform a complete
numerical evaluation of some solution of the slow shxp free surface condition to assess the
limitations of the ray approximation!

For sake of record it should be mentioned that the results of our investigations have re-
cently been presented at the International Symposium on Numerical Ship Hydrodynamics in
Hiroshima. However, no substantial discussion of above controversial issue could be provoked
so far.
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Fig.1 Sketch for flow angle 8 and wave angles 6 and vy (both shown with negative values,
. typical for the starboard side of the bow).

Let us present the situation of ray tracing near a corner for the canonical case of a wedge of
infinite extent, where the basic flow is 2-D, so that complex analysis can be used.
We introduce

Z=z+iy=r-e® Vu—iv=Uq-e*, (1)
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Then P stands for some gradient of the double body flow pressure.! The ray equations may be

written as 5
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With ds as differential of the arclength along the ray, this implies that dr/ds = 1/|dZ/dr|=

ke/2cq1, where ¢4 stands for the action transport velocity along the ray, so that we can write

the ray equation as
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Here o means 1 for (A*) and (A%, it means 0 for (4) and (A). The flow in the vicinity of a
stagnation point due to a corner is basically the flow near a corner between infinite planes as
decribed by Milne-Thomson [10], we have

Vx@Q- e(iwﬂo/(ﬂ—ﬁo) . Zﬁo/(ﬂ'—ﬂo) (6)

2
"H(V"

"Tulin [8] considered a quantity related to | P| as a disturbance parameter and came to the
vexing conclusion that ray theory does not apply for bow entrance angles fy < /3 as otherwise
P is not bounded. On the other hand, Maruo [9] disclaimed the validity of ray theory for
Bo > /3 due to divergence of an integral representing the phase.
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where @ is a real constant; this means that the range
BoLé<m
for the polar angle 6 is mapped on the range
Bo 2 B(8) = Po(x — 6)/(x — Bo) > 0

for the flow angle. In the special case of a bi-circular strut of opening angle 26y and length L,
under parallel flow of strength U, we have
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Then the rate of change of 6,3, and k along the ray is found from
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Observing (34) and (5), separating real and imaginary part in (43), we find
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In the vicinity of a stagnation point, for rays emanating from there, we have § = a+ 3, hence
dB/ds = 0, thus da/ds = 1/r - Bo/(7 = Bo) - 2sin(2y — a) - da/dy with o = 0 under (A). For
da/dvy non zero, this can tend to a finite limit without invalidation of the dispersion relation
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only if 4 = a@ = 0. Hence, unless showing infinite curvature, all rays must emanate tangentially
to the hull from the stagnation point, with wave front normal in ray direction. The finite
limit should depend on §é i.e. on the direction of approach, with zero curvature if approached
tangentially to the hull. This explains the numerical difficulties as experienced by Brandsma.

A ray can not coincide with a streamline (or with the waterline in particuar) if there is
curvature. We would have to require @ = 0, i.e.y = 0 hence da/ds i.e. dy/ds = 0; with
Cat = € — ¢4 then, this implies
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valid even away from stagnation points; however, as V = u — iv = Uqe™*?, this means that a
change of the flow occurs in flow direction only, thus a ray can coincide with a streamline only
if the rate of change of V' is in the flow direction, i.e. that the streamline has no curvature!

For the rate of change of the wave number k we find
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If the value of A along a ray should equal the critical value p?/2, this would correspond to the
minimum for gravity waves; hence k then must decrease along the ray. However, due to the
rapid increase of | v | near a stagnation point, the sum of cosine terms may change sign, so that
k increases (in particular for (A4)’ where the first cosine term is deleted) and A approaches p?/2
again. Here the ray must terminate, as for A = p?/2, even off the waveless zone boundary, the
partial derivatives of A both regarding ¢ and v vanish simultaneously in conflict with the ray
equations, ¢ can not be varied independent from . This explains the previously mentioned
occurence of short life rays. Hence the choice of initial points for rays is moot, quite apart from
the ambiguity of assigning initial values there for amplitude and phase.
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DISCUSSION

Raven: Surely ray tracing is based on the assumption that the wavelength is small com-
pared to the length-scale of the base flow? Thus, it must break down near the bow, where
the length-scale goes to zero, in general. This is likely to inhibit the convergence of any
discretisation of the slow-ship condition, say by a panel method, for vanishing panel size.
The results obtained with such methods, however, suggest that this near-bow behaviour
has only a local effect on the solution. Could you comment on this please?

Peregrine: Ray theory is not consistent near the ship, since it assumes a length-scale
much greater than a wavelength and waves like a wavetrain. The next approximation
which is generally used is the parabolic approximation. For waves generated by a wedge,
see Yue & Mei [1], where nonlinear effects are also included.

Kleinman: What is unacceptable about having rays with different curvature emanate
from one point, provided a canonical problem can be solved which gives the launching
coefficients or amplitudes of the different rays?

Eggers: As under Keller’s approach the ray geometry does not depend on the Froude
number, the shortness of waves is not felt when rays are constructed. Just as streamlines
from a general three-dimensional stagnation point emanate along two mutually orthogonal
directions only (along one of them under continuous variation of initial curvature), this
may certainly occur with rays. Still, the physical relevance of such lines is linked to the
possibility of assigning amplitudes, phases and wavenumber vector to these different rays
with common initial direction. Even if this could be achieved in a canonical example, this
does not remove the need for a proof of the pertinence of the ray approach in the near field
of a ship. In the spirit of matched asymptotic expansions, we must expect the existence
of some boundary layer around the ship where the ray approach is not appropriate, even
without showing singular features, and even for the case of a submerged body. The near
field is just not determined from downstream information.

I do not feel that this dilemma can be reduced through a parabolic approximation.
The problem treated by Yue & Mei [1] is wave diffraction near a sharp bow, and finite
water depth is obviously required for the application of their method.
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