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Introduction

In a previous paper (Cointe and Armand, 1987), the hydrodynamic impact problem was addressed
for a circular cylinder. The method of matched asymptotic expansions was used. The small
parameter was the ratio of the penetration depth to the wetted width. An outer solution was found on
a length scale equal to the wetted width of the cylinder. An inner solution with a jet was found in the
vicinity of the spray root, i.e. the intersection of the outer free surface with the impacting body.
Matching of the two solutions yielded the thickness of the jet. This solution is very general and can
be extended to a wide range of geometries, including the wedge. The method of matched asymptotic
expansions allows the result of Wagner (1932) concerning a wedge with small deadrise angle to be
recovered.

In this case, and in the absence of gravity, the resulting flow is self-similar. A consequence is that
the length of a free surface arc should remain constant. In the inner domain, the jet has a constant
thickness and an infinite length. The length conservation property is therefore violated by the
solution resulting from the matching of the outer and inner solutions.

In order to overcome this difficulty, it is suggested that a third solution has to be introduced, the jet
solution. This jet solution is matched to the inner solution which is itself matched to the outer
solution.

The method allows the size of the respective domains and the corresponding equations to be
determined. It should be very useful as a guide for future numerical computations. The procedure is
outlined is this paper in the case of the wedge. When the flow can be regarded as self-similar, an
analytical solution is found. The extension to a flow that is not self-similar is discussed.

Equations of the problem

We assume that the fluid is incompressible and that the flow is irrotational. The wedge is supposed
to be rigid and is moving downward at the constant velocity U. The x-axis coincides with the
undisturbed free surface. The y-axis is the axis of symmetry of the wedge.
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If the deadrise angle 0 is small, the wetted width is of order Ut/0. This quantity is taken as length
scale. If the velocity scale is U, the corresponding non-dimensional equations for the velocity

potential ¢ (which is harmonic in the fluid domain) and the free surface position are:

t
%y+t¢t+¢-x¢x-y¢y+%ev¢.V¢=O

tS;+0Sxdx+0Syby-xSx-ySy=0 for S (x,y,t) =0
x sin O - ¢y cos B = cos 6 for  O<x<A, (y+6)=xtan®

0x=0 for x=0,y<-0

Note that due account has been taken of the fact that the length scale is time dependant.

QOuter Solution
We now assume that the deadrise angle, 6, is small. In the outer domain, the following expansions
are then assumed:

SEy)=-y+0nxt)+0(@®), 6=P+o0(1)

At the leading order in 8, the equations of the problem in the outer domain become:

G%t—n+t(1)[+®-xd)x=0

tM-Py-xMx+M =0 for x>A,y=0
Dy =-1 for O<x<A,y=0
o, =0 for x=0,y<0

If t << U/g0, a self-similar outer solution, here a solution independant of time in non-dimensional
variables, can be found. The potential @ corresponds to the unbounded flow around a flat plate of

half width A. The free surface elevation and the wetted width are obtained by solving the kinematic
free surface boundary condition (see Cointe and Armand, 1987). This gives:

=% n={1-X%X A
A 2,1] {-1 l(arccosx 19}

Inner Solution

This solution is singular near the spray root (x = A, y = 6(A-1)), i.e. the intersection of the (outer)
free surface and the wedge. This stems from the fact that the asymptotic process is incorrect near this
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point. An inner solution can be found by introducing the inner variables:
02x*=x-L, 02y*=y-0(A-1), O0*=0,tk=t,

the free surface being given in the inner domain by:
S* (x*y*t) =0

At the leading order in 6 (still assuming t << U/g0), the inner domain equations are:
->L¢';+%V¢* Vo =0

Sk Ox + S; ¢$' -A85=0 for S* (x*y*t) =0

*

¢y =0 for y*=0

A solution to this problem can be found with a jet of constant thickness 6* in which the velocity is

2A, i.e. twice the horizontal velocity of the spray root (see Cointe and Armand, 1987). Matching
with the outer solution yields the thickness of the jet,

§=mn__1
g 4

This result agrees with that of Wagner (1932).

Jet Solution

If the outer and inner solutions are matched, we obtain a jet going all the way to infinity. As stated
above, this violates the arc length conservation property that the self-similar solution should satisfy.
Since the shortening of the outer free surface 1s of order 1 and the thickness of the inner jet is of

order 82, we expect to find a jet along the wedge boundary on a length scale equal to 1 and a
thickness scale equal to 82. We, therefore, define the new variables:

s =cos 0 x +sin 0 (y+0), 62n=-sin O x +cos 8 (y+0), (p=(')q>—93n
the free surface being given in these new variables by n = h (s,t).

At the leading order in 6 (still assuming t << U/g0), Laplace's equation and the body boundary
condition yield ¢ = ¢ (s). The free surface boundary condition now yields:

t<pt+<p~s¢s+%w%=f(t)

thy+hs@s-shg+h=0




Matching with the inner solution implies that
¢; (M) =21 and h (L) = - §*.

This finally gives the solution
@g=2A and h = - §* (2 - 5/A).

According to this model, the velocity in the jet is constant while the thickness is linearly decreasing
with the distance from the spray root. As a consequence, the length of the jetis equal to A. Note that

this is just equal, at leading order in 6, to the shortening of the outer free surface. The arc length
conservation property is therefore satisfied by the present composite solution.

A rather interesting consequence is that the intersection angle between the jet and the wedge is
simply given by :

_g?8 .02
tan B=6 N

In particular, it goes to zero with the deadrise angle, in agreement with numerical results obtained by
Dobrovol’skaya (1969) but in disagreement with the 9.5° limit obtained analytically by Johnstone
and Mackie (1974). It should be noted, however, that the jet model might not be relevant to a local
analysis near the tip.

Conclusion

The impact problem has been discussed in the case of a wedge with small deadrise angle. The jet
appearing in the vicinity of the spray root has been described by equations similar to those of Saint-
Venant (shallow water equations) in dimensional variables. Boundary conditions for these equations
are provided by matching the inner solution, valid in the vicinity of the spray root, and the outer
solution. The problem has been solved in the case of a self-similar flow. The outer equations could
however be solved numerically in the general case (given initial conditions, non-constant impacting
velocity, large times, etc...). As long as the inner solution remains the same, the jet equations could
then be solved using as boundary conditions the jet thickness and the jet velocity resulting from the
matching between the outer and inner solutions. In particular, this should allow the development of
the jet to be studied. '
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