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Consider the Kelvin wave source. We define the following coordinates: the origin is
taken at the position of the image source above the free surface, z is positive in the direction
of forward motion, z is positive downwards; the coordinates are nondimensionalized by
gravity and the forward velocity. We will use the cylindrical coordinates (z,p,a) with
z+ iy = pe'®, and the spherical coordinates (R, 8, p) with R = /23 + p3, 0 = tan~(p/z),
p=a.

We consider the potential of the Kelvin wave source under the form used by Bessho [1],
Newman [2] and Baar & Price [3]. Under this form efficient algorithms have been found for
the numerical evaluation of the double integral [2] and the single integral for parts of its
domain of definition. There exists several expressions for the latter, valid in more or less
complementary domains:

~ Bessho’s convergent series ([1], eq. (4.2)) ~ which we note (CS1) - for a region
extending from the far-field to the near-field but away from the z-axis ([3] and [5])

- Bessho’s asymptotic series ([1], eq. (4.3)), completed by Ursell [6], — noted (AS1)
~ for the vicinity of the z-axis but away from the source ([4] and [5]), which is
complementary to the region of validity of (CS1) for 1 < |z| < 16.75 with six digits
absolute accuracy

- a modified ‘Bessho-Ursell’ asymptotic series [5] — noted (AS3) - complementary of
(CS1) and (AS1) in the neighborhood of the source.

Therefore, in order to complete this numerical evaluation, we have to find expressions for
the single integral in the remaining portion of its domain of definition, namely far away
from the source in a region including the cusp lines 0] = sin™*(1/3) = 6..

This region was historically the first to have drawn attention from hydrodynamicists.
In his 1887 paper “On Ship Waves”, Lord Kelvin defined the problem satisfied by the poten-
tial and used his principle of stationary phase to show that the characteristic wave-pattern
lies in the region |0| < 8.. His results, valid many wavelengths behind the source, were sub-
sequently refined by Havelock in 1908, Hogner in 1923, Peters in 1949 and Ursell in 1960
(for a more detailed account of these results see [7]). Ursell completed the works of Hogner
and Peters who used the method of steepest descents, by considering the neighborhood of
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the cusp line and applying there the method of Chester, Friedman & Ursell {8].

These earlier contributions were concerned with the free surface elevation, that is
when both the source and the field point are on the free surface (|| = #x/2). Here we
propose to apply the method of steepest descents to the potential for any submergence of
the source (jo| < x/2) rather than just for the wave élevation.

As found by Hogner and Peters, the nature of the asymptotic expressions changes
completely when 8 passes through 6.. This corresponds in fact, as noted by Ursell (7], to the
coalescence of two saddle points, or cols, for § = 8,. We shall see how these results extend
to the complete range of (8, ), and how they can be applied to a numerical evaluation.

The method of steepest descents applied to the single tntegral

We start from the expression for the single integral f given by:

e
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where: F = }(F* + F~) and:

oo tiaf2 p
F* = / exp[— - cosh(2u — fa) & §z cosh u] du
~oco+iaf2 2

(see [6], eq. (2.2); [5], eq. (I11.3.1), (I1.3.2)).

Since the complex conjugate of F* is F~, we only need to treat F*. Using the spherical
coordinates (R, 8, p) and the change of variables ¢ = exp[—u + %], we get:

® d
RO
0
with: x(¢,0,%) =sin@- (- ¢? - 2a°¢+2a5™! ~¢~?) /4 where a=1icotf- /2.

We want to obtain expansions for F* when R islarge,0 < 8 < x/2,0 < |p| < x/2, and for
this purpose apply the method of steepest descents.

Finding the cols

The cols are given by the roots of a quartic polynomial and therefore are quite easily
obtained using analytical expressions. From the location of the roots for the range of interest
of (8, p), it appears that only two of the four roots have to be considered.
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The nature of the expansions

The nature of the expansions, that is whether the expansions are in terms of Gamma
functions or Airy functions, is determined by the distance between the two cols, or between
their image by the mapping W : ¢ — w = x(¢). It can be shown that the coalescence of the
cols only occurs for (0, ) = (6;,/2). From Chester, Friedman & Ursell [8] we then know
that there exists a non-empty neighborhood of (8., x/2) in C? where the expansions in terms
of Airy functions are uniformly valid with respect to (4, p). Outside this neighborhood the
‘usual’ expansions in terms of Gamma functions are used at each relevant col.

The relevant cols

This is the most difficult task since we are dealing with a whole set of functions
x($,8,9). Our goal is to define, according to certain criteria, domains of the (8, p)-space
identified by the cols which are relevant. The method of conformal mapping developped by
Ursell [9] is here very useful and allows us to define two domains: one where only one of
the cols is relevant, the other where the two cols are relevant.

This defines three domains on the boundaries of which, the matching of these expansions
determines the minimal accuracy that can be expected. Of course the overall numerical
validity of these expansions depends on their matching with the already existing expressions
(CS1) and (AS1).

The numerical implementation

The principles allowing us to obtain the two kinds of expansions are given in [8].
Due to the relative complexity of the expression of x, the expansions are obtained up to
an arbitrary order following these procedures. A series of symbolic operations, which are
indeed valid for any function ¥, is first performed. The resulting information is stored once
and for all, then for each value of (R, 8, ) the coefficients of the expansions are obtained
according to the characteristics of the cols (if they are relevant or not) and of the expansions,
from this information.

This should allow us to compute efficiently and with the desired accuracy the Kelvin
wave source potential everywhere in the fluid domain, its integrals (with a gain in accuracy
and/or speed) or its derivatives (with a loss of accuracy (speed) and/or a deterioration of
the domain of validity). Exact solutions for simple cases of the thin ship theory can thus be
obtained after some analytical work. By its accuracy and its efficiency this set of numerical
evaluations for the potential seems to be most appropriate for wave-pattern predictions in
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the frame of a hybrid numerical approach for forward motion problems. But one should
certainly not expect from these evaluations any kind of ‘miracle’ regarding a numerical
solution of the Neumann-Kelvin problem for surface piercing bodies. In any attempt of
this kind, it seems highly recommandable, if not absolutely necessary, to consider analytic
integrations of the potential on panels or segments, rather than any kind of numerical
integration of these quantities.

This work was supported by the U. S. Office of Naval Research. The author also acknowl-
edges the French Ministry of Defense for allowing him to accomplish this work as part of
his ‘Service National’.
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DISCUSSION

Standing: Can you clarify the source of the high-frequency oscillations in your results?
Have they something to do with using the method of steepest descent, or are they an
inherent feature of the source wave pattern when the source is at the surface? Many years
ago, we observed something similar when computing the wavemaking of hovercraft. We
were unsure whether they were due to the numerical approach we had adopted, which was
similar to the method of stationary phase with numerical fade factors either side of the
stationary phase points.

Clarisse: These high-frequency oscillations are features of the Kelvin wave source poten-
tial when the source point and the field point are both on the free surface. They correspond
to the diverging waves.

Tuck: When working on the study reported in [1], one of my co-authors was rather
contemptuous of my interest in the kind of steepest descents analysis you use. In the end
he was able to use clever numerical equivalents of these methods to evaluate the integral
directly (see Appendix 1 in [1]).

Clarisse: I agree that appropriate numerical methods can do as well as, if not better
than, this approach in terms of speed, but the idea here was to obtain an evaluation
which was ‘uniformly’ valid in the (R, 8, ¢)-space (and not only for || = 7/2), consistent
with analytic expressions enabling differentiations or integrations of the potential and the
control of the validity and accuracy of their numerical evaluations.
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