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The problem that we consider here is the calculation of (sum-frequency) second-order loads on
TLP hulls, including the (dominant) contribution of the second-order diffraction potential through the
so-called free surface integral [1]. The final aim being to predict the loading at the heave roll and pitch
resonant frequencies.

We have first used a purely numerical model based on a source distribution technique [5]. As
the wave frequencies are increased memory space and computer cost quickly become prohibitive since
the meshings of both the hull and the free surface must be sufficiently refined. Moreover the numerical
convergence of the obtained results remains to be assessed in some way.

Since at small wave periods only the top part of the columns can be reached by the first-order
wave field, it appears that analytical methods, such as the one proposed by Linton and Evans at the last
workshop [2], can be used to solve the first-order diffraction problem, the pontoons being neglected and
the columns assumed to be infinitely deep. Such a geometric simplification may not be applied to derive
the second-order loading since the second-order diffraction potential is known to penetrate deeper the
water column, but it may nevertheless be used to determine some of the components of the second-order
loading, and the right hand side of the free surface equation. Last, solving the complete second-order
problem for infinitely deep columns provides a valuable benchmark to check the convergence of the
purely numerical approach.

Along the same lines it may also be questioned to what extent interaction effects between the
columns play a role as far as the second-order loads are concerned. For instance Kim and Yue [3] take
the first and second-order loading on a 4 column structure to be equal to 4 times the loading on one
isolated column.

A better approximation (at least at first-order) is to include the effect of phasing of the incident

~waves on the 4 columns. This results in corrective factors equal to coskoD/2 for the first-order loads
and cos kgD for the double frequency second-order loads, where D is the column to column spacing and
ko the wave number.

According to this approach the drift force on a 4 column structure would still be equal to 4
times the drift force on an isolated one, which is known not to be correct. Nielsen [4], using the far
field method, calculates the drift force by just correctly adding up, algebraically, the diffracted wave
fields due to each of the 4 columns in the absence of the other 3. Even though it cannot be said that
interaction effects are thus accounted for in any way, this approach seems to work quite well for the drift
force. It may be wondered whether it would work as well for the double frequency loading.

These considerations have motivated the present study where we extend Linton and Evans’
method to the calculation of the double frequency second-order loads, and where we compare the results
to those obtained with simplified methods, such as Kim and Yue’s or Nielsen’s.

In the following we recall Linton and Evans’ method for the diffraction problem (the radiation
problem — which we need to solve to compute the free surface integral — being solved along the same
lines).

The (r,8) polar coordinate system and (rj,6;) j = 1,---,4 subsystems are used. The first-order
potentials are written as:
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with the incident and diffraction potentials defined by:
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The coefficients A7, in (3) and (4) are determined by the linear system:
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where the phase factors are written as:
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Note that if the coefficients are taken as A% = ~1(j =1,--,4 n=-N,.--,0,---,N) instead
of being determined by equations (5), expression (2) represents the superposition of 4 single-cylinder
solutions (i.e. Nielsen’s approach).

The exciting forces are obtained by direct integration of the hydrodynamic pressure on the cylin-
ders. The second-order double frequency forces consist of one component which corresponds to the
quadratic term in Bernoulli’s equation plus a corrective term on the waterline, and another component
which depends on the second-order diffraction potential. The first component is easily obtained. The
second one is transformed into the free surface integral :
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where ap is the right-hand side of the free-surface equation and ¢ is the radiation potential at the
double frequency 2w. The free surface integral is evaluated numerically in an inner domain to some
radial distance Ry and analytically from that distance to infinity.

According to Kim and Yue’s approach one just multiplies by 4 the results corresponding to one
isolated cylinder :

Filey = 4% Filicyt Farlacyi = 4% Forlieyt Fazlacyt = 4% Faaliep (8)

(Fs refers to the first component of the second order loads, and Fag to the free surface integral).

In the second approach one only takes account of the phase differences in the incident wave
field :
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where D is the horizontal distance between cylinders.

Last, Nielsen’s method yields the following :
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where the phase factors I5; are defined by:

Izj - e2iko(::.,,' cos f+Y.; sin B) (13)

In the numerical calculations the column to column spacing D has been taken equal to 8 times the
column radius, and the draft equal to 4 times the radius. Figure 1 shows the modulus of the first-order
diffraction load, according to each of the 4 methods. A fair agreement is obtained between methods 2
(incident phasing), 3 (Nielsen) and 4 (Linton and Evans).

Figure 2 shows the drift force, where it can be seen that Nielsen’s method is appropriate only at
low values of the non-dimensional wave number (still the cases of practical interest).

Figure 3 shows the modulus of the first component of the double frequency second-order force.
Again a reasonable agreement is offered by methods 2, 3 and 4. Figure 4 shows the modulus of the second
component according to methods 1, 2 and 4 (Nielsen’ s method results are missing), which appears to
be around 3 times larger than the first component. Method 4 predicts results appreciably larger than
those provided by the approximate methods. When both components are added up (Figure 5) this trend
becomes even more visible, because of cancellation effects between both components as predicted by the
approximate methods. It may therefore be concluded that interaction effects do play a dominant role
for the double frequency loading.
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DISCUSSION

Rainey: To me, this is a very impressive piece of work, because it improves our insight
into why TLP’s behave as they do. Perhaps the key to this success is in the use of a range
of different approximations, and the careful comparison of the different results.

I hope that my own ‘wavy lid’ approximation [J. Fluid Mech. 204 (1989) 295-324]
might one day help this process on another TLP problem, which is nonlinear wave loads
in ‘survival’ conditions. Here, the waves are, of course, much larger than the resonant
conditions considered above, so the important nonlinearities may be quite different. The
effects of the quadratic Bernoulli pressure term at the cylinder ends, and of the structural
motion, would, I believe, be handled very neatly by my method.




