Trapping Modes Above Non-Cylindrical Bodies
M.A.Callan
Department of Mathematics, University of Bristol

University Walk, Bristol BS8 1TW.

Using the theory of bounded symmetric linear operators together with
Kelvin's minimum-energy theorem of classical hydrodynamics,Ursell(1987) was able
to show that trapping modes exist above any infinitely long submerged horizontal
cylinder which is symmetric about a vertical plane. The proof of that theorem
relied on the knowledge of the existence of a trapping mode above a circular
cylinder of small radius [Ursell(1951)].

In the discussion section of the 1987 paper, Ursell suggests that the
arguments may possibly be extended to non-cylindrical bodies, and in particular,
to a sphere situated at the centre of the channe{ (equivalent to an infinite row
of equally spaced spheres.)

Thus, the modified Helmholtz equation used in the cylindrical case, must now

be replaced by the three dimensional Laplacian

g;ﬁ+%;¥+§;$=o.

To find a non-trivial solution of the homogeneous boundary value problem for
a submerged sphere in a canal of width 2L, we start with the three dimensional
point singular potentials, derived in Thorne(1953), with singular terms of the

form

2m+1
——————r—lPn ,r(xgosa sin(2m+1)9.
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Suppose that the canal walls are given by the planes =z = £L; then, with the

multipole placed at (0,h,0), an infinite system of 'canal-image potentials' at

29




(0,h,+2jL), j=1,2,... will be generated. We denote the image potential centred
on (0,h,2jL) by 43™3* , and consider the sum

ng'l E [¢2m¢ gTé}ol .

Then it follows by construction that ®2™** has no flux across the canal walls.
Also, it can be shown that if K < r/2L (= f,, say) then no waves propogate to

infinity. The expression for ®2™**' has a series expansion of the form

attt o= ij:%§9$§g181n(2m+l)¢ + § i% B:3R:t r5P3P**(cosf)sin(2p+1)¢
(‘ = 8/2,(s-1)/2 whichever is integral)
valid for 0 < a < min{2h,2L}. We now assume that the velocity potential, ¢, may

be written as

n+2,2m+1
a Cn

$= L L iy e

The unknown coefficients ci™"* are determined from the body boundary condition

and satisfy

n .2

2m+1 1 n 2
Cn S(2p+1) E1m 0(n+1)
(s-1,2,... ,p=0,...,8)

where the quadruple series can be shown to satisfy

§ § % g n+s+1

s=1p=0n=1im=0

Bg Zhiia

(n+1) (2me1)7 s(2p+1)!

if 0 < a < min{L, h/3’3w(%+g§g{ %%;7%%%} the convergence being uniform if

0 < coty < M(afo)™® where K = Bocosy
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To show that the determinant of the above system of equations vanishes for some
value of K,a,h,and L, it is possible to use Ursell's method of letting the
radius of the sphere tend to zero whilst the wavenumber approaches f,. See
Ursell (1951).

The vanishing of the determinant implies the existence of a non trivial set

{ca™**} such that

w #
¥y X |C§m+1| < o
n=1im=0
and the corresponding velocity potential is a trapping mode. When the

determinant vanishes an approximate relation between K and fo is given by
K ~ fo(1-8(afo)®exp{-4foh}+...)

Using the fact that a trapping mode exists for a sphere of small radius, it
should be possible to extend the work in Ursell(1987) and deduce the following
theorem (c.f. Ursell,theorem 5.2)

Theorem: Suppose that S is any submerged closed body which is symmetrical about
the central vertical plane of the canal. Then there exists at least one trapping
mode.

This work is under investigation.

It was also stated that trapping modes can be proved to exist when the
governing equation is the Helmholtz equation

g;ﬁ + g;? + k%6 = 0,
where the fluid is bounded internally by a rigid circular cylinder and bounded
externally by two parallel rigid walls.
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DISCUSSION

Evans: Mike Callan has stated that trapping modes can also be proved to exist for the
Helmholtz equation when the fluid is bounded internally by a rigid circular cylinder and
externally by two parallel rigid walls.

If, instead of a circular cylinder, we consider a cylinder of rectangular cross-section po-
sitioned symmetrically between the walls, eigenfunction expansions readily permit trapped-
mode frequencies to be determined. Thus, let the walls be described by |y| = d,
—o00 < = < oo and the sides of the rectangular cylinder by |z| = @, ly| = b, 0 < b < d.
Then, there exist trapped modes which continue to oscillate indefinitely in the vicinity of
the cylinder and which vanish as |z] — oco. The problem can be regarded as a water-wave
problem, in which the rectangular block is immersed throughout the entire water depth
H and we are seeking discrete values of k. Then, the trapped-mode frequencies are given
by w where w? = gktanhkH. Alternatively, the problem can be regarded as arising in
acoustics, in which case w = kc, where ¢ is the velocity of sound.

Results for the variation of kd for trapped modes with a/d for different values of b/d
are shown in the Figure. As a/d — 0, kd — 7 /2 the lowest cut-off frequency for the
channel. Notice that varying b/d does not affect the modes significantly and that a flat
plate on the centre-line (corresponding to b/d = 0) can support trapped modes. As a/d
increases, further modes appear.

The discovering of these modes was prompted by a remark of Prof. Fritz Ursell during
a visit to Bristol in February, 1990.

1.6

Modes trapped by a block in a channel
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Newman: Is there a connection between these trapped waves and the resonant cross-waves
near a wavemaker?

Callan: No. Approaching the cut-off frequency is a mathematical trick used to show the
existence of trapping modes.

Peregrine: Are trapped modes likely to be associated with the higher cut-off frequencies?
Callan: The question is a very difficult one — is there a discrete spectrum embedded in
the continuous spectrum? I have been working on this problem but achieved nothing.

Simon: Recent work by Weck [1] seems to indicate that your problem will be unique (i.e.,
there will be no trapping modes) for

ﬁ > cosec1l ~ 1.188;
a

equally, this work would seem to rule out trapping modes for any sufficiently submerged
body in a channel. However, Weck’s extension of a correct 2-D result to 3-D is incorrect,
and so uniqueness cannot be concluded from his work, in this situation.

Callan: That’s a relief!
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