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Rankine source methods (RSM) have been successfully applied to the steady wave problem (wave re-

sistance problem) by several authors. Two problems have long impeded their application to free-surface
flows:

1. The radiation condition:

In the steady wave problem, waves will propagate only downstream; i.e. far ahead of the ship no waves may

appear. In time-harmonic problems for 7 = Uw/g > 0.25, radiated or diffracted waves will also propagate
only downstream.

2. The open-boundary condition:

Only a limited area of the free surface can be discretized. Waves must pass through the outer boundary of
this area without significant reflection.

Both conditions must be fulfilled numerically in RSM. Nakos and Sclavounos (1989) used successfully
a quadratic-spline scheme for steady and time-harmonic (7 > 0.25) problems. Jensen (1988) showed the
effectiveness of another numerical technique for the steady case: By shifting the Rankine sources above the
free surface versus the collocation points on the surface, both radiation and open-boundary condition are
fulfilled. His trial computations for a submerged dipole show excellent agreement with analytical results.
Bertram (1990) investigated in analogy the applicability of Jensen’s shifting technique for time-harmonic
problems.

The first test case is a submerged point source moving steadily in an ideal fluid at a distance d under
a free surface. The source strength pulsates with unit amplitude and reduced frequency 7 = Uw/g. The
problem is governed by Laplace’s equation subject to the boundary conditions: (a) no water flows through
the free surface, (b) constant (atmospheric) pressure at the free surface, (c) for 7 > 0.25 waves do not
propagate ahead.

In a coordinate system moving with the source, the total potential ® is approximated by the sum of a
uniform-flow potential and a time-harmonic potential ¢. ¢ includes the pulsating submerged source and a
time-harmonic free-surface correction. Linearizing the usual free-surface condition with respect to ¢ and ¢
gives:
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The surface is discretized into a regular grid of n. - ny collocation points. Above the free surface a
corresponding number of Rankine point sources is located. All sources are shifted uniformly in z-direction
and gradually in y-direction. In numerical experiments Bertram (1990) determined suitable rules for shifting
sources for various 7, largely confirming earlier results of Jensen (1988) for 7 =0, U > 0.

For 7 = 1 and d = 0.45U2%/g Nakos and Sclavounos (1989) compared their RSM results with an analytical
solution. The analytical solution does not appear to be very accurate outside of the sector of waves due
to the particular integral representation of the solution used in the code (Nakos, personal communication).
Fig. 1. shows that the shifting technique also gives very good agreement with the analytical solution in the
wave sector. Compared are contour lines of the real part of the potential.

 Using the same shifting technique, the diffraction problem for a submerged ellipsoid in head seas was
solved. The total potential ® is divided as follows:

b = ¢s + Re((¢o+go)ei“") — ¢: +Re(¢ieiwt) (2)
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¢° is the stationary potential fulfilling the nonlinear free-surface condition as determined by Jensen (1988),
¢o the incident-wave potential and ¢ the diffraction potential. w is the frequency of encounter. The free-
surface condition is linearized with respect to ¢':

(—w2 + Biw)qsi + ((2iw + B)V¢3 +a+ ag)v¢i + V¢s(v¢sv)v¢z =0 at z = (* (3)

where (* is the stationary wave elevation, @ = (V¢°*V)V¢* the particle acceleration in the stationary flow,
@ = d-(0,0,9) and B = —(@V¢*),/aj, where indices z and 3 mean partial derivative resp. vertical
component. If the stationary flow is approximated by uniform flow, this boundary condition would reduce
to the familiar condition:

- W'~ 20, — g4L + UL, =0 at z=0 (4)
On the body surface the Neumann condition gives ( normal unit vector):
AV =0 (5)

Both body and free-surface condition are approximately satisfied by distributing Rankine sources on
these surfaces of the type used by Jensen (1988) for the stationary problem. First the stationary problem,
then the diffraction problem is solved using RSM. Test results for an ellipsoid with L/B = 5, d/B = 0.75
(d depth of body center), Fxy = 0.2 agree well with experiments by Ohkusu and Iwashita (1989), Fig. 2.
Only for A/L = 0.4 (A wave length of incident wave), the experimental results could not be reproduced. 172
collocation points on the body and about 900 at the free surface were used. The grid on the free surface
was adjusted to wave length, using finer spacing for smaller A.
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Fig. 2. Vertical wave force for a submerged ellipsoid at Fy = 0.2,
o experiments Ohkusu and Iwashita, ¢ computation Bertram
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Fig. 1. Contour lines of the real part of the velocity potential on the mean free surface due to a submerged
time-harmonic source with depth of submergence d = 0.45U2/g. Numerical solution (bottom half) and
analytical solution of Nakos (top half ).
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