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We consider the problem of a floating body, partially submerged in an infinite, ideal, inviscid,
irrotational fluid, subjected to periodic displacement or rotation. QOur interest is not primarily
in determining the velocity of the fluid induced by the oscillatory ship motion but rather in
determining hull forms which optimize functiona.ls.of the velocity. In particular our goal is to find
a constructive method for finding a shape in a constrained family of admissible surfaces which

optimizes added mass or damping.

In this paper we describe such a method and indicate the mathematical questions that remain
to be answered in order to prove existence of optimal shapes. However these mathematical results

are not needed in order to implement the method numerically.

In order to set the problem recall tile mathematical formulation of the floating body problem:
Orient a Cartesian coordinate system with origin on the projection of the wetted portion of the
hull, T, on the free surface (see figure). We seek a velocity potential ¢ which satisfies Laplace’s
equation V2¢ = 0 in the fluid domain, a radiation condition at infinity, the linearized free surface
condition %% — K¢ =0on y =0, the boundary condition %g = G on I' and. in the case of finite

depth, g—‘: = 0 on the sea floor.
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The problem may be cast in two dimensions (in which case I' is a curve) or in three dimensions

(in which case I' is a surface), and either finite or infinite depth. The radiation condition takes
n—2 .

the form p~=7 (g% — zku¢) = o(1) as p — oo where for n = 2, p = z, whereas for n = 3,

p = Va? 4 22, For infinite depth ko = & while for finite depth (y = —h), ko is the root with

largest real part of the equation ky sinh kgh = K cosh kqh.

The problem we consider is that of finding I in some suitable class which optimizes some
functional of the solution of this problem. We choose to concentrate attention on the added mass

and define the cost functional

L((}Sr,g) := Re /P ¢I‘,G GdI

where ¢r ¢ is the solution of the floating body problem with normal derivative G on I'. Our
goal is to find a surface I' which optimizes this functional without solving a succession of direct
floating body problems for different surfaces. The underlying mathematical (iuestion is whether
we can choose a family of admissible surfaces, which is largé enough to be of physical interest,

and which contains an optimizer of the cost functional, that is, a surface I'g such that

L(¢r,,c) < L(¢r,g)

for all admissible I'. In that case the optimization problem is said to be solvable.

Our approach is guided by our work on the similar problem for the fully submerged body.
The two problems ar closely related but have significant differences. First of all, the class of sur-
faces for which either problem may be shown to be uniquely solvable is restricted geometrically.
For the floating body the restrictions under which John (3] originally established uniqueness have
been relaxed somewhat (Kleinman [4], Simon and Ursell [7]) while for the submerged body, en-
tirely different restrictions were needed by Maz’ja [6] (see also Hulme [2]) to establish uniqueness
for solutions of the boundary value problem. These restrictions must be incorporated into the

class of admissible surfaces for the optimization problem. Another difference in the two problems
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arises from the integral equation formulation. For the submerged body the use of Green’s theorem
using John’s Green function, which satisfies the free surface condition, leads to a uniquely solvable
integral equation. For the floating body, the same procedure leads to an integral equation which
exhibits the well known irregular frequency malady, frequencies at which the integral equation
is not uniquely solvable. This uniqueness problem is intrinsic to the integral equation formula-
tion and is not to be confused with the uniqueness questions for the boundary value problem.
The integral equation formulation plays a key role in establishing the existence of a solution of
the optimization problem. The idea is to show that the functional varies continuously in some
appropriate sense wi‘th changes in the boundary I'. Then by restricting T' to lie in a compact
set the functional will be continuous on a compact set and hence will assume its minimum (and
maximum) on the set. In the submerged case the uniquely solvable integral equation was used to
establish this desired continuity. For the floating body, a uniquely solvable integral equation is
needed and is available e.g. Kleinman [4], Wienert [9], however the equation is more complicated
than that used in the submerged case in order to eliminate the occurrence of irregular frequencies.

The analysis required to establish continuity of the functional is yet to be completed.

However, the constructive optimization method relies not on the integral equation formu-
lation but on the availability of a complete family of solutions by which we mean a family of
functions {u j}f—_o such that V2u; = 0 exterior to every surface in the admissible class, and uj
satisfies the free surface condition, and the radiation condition, the boundary condition on the
sea floor in the finite depth case. Moreover the normal derivatives of u; are to be complete and
linearly independent on every surface I in the admissible class, that is, if (u, u;) r2(ry = 0 for every
J, then u = 0, where (-,-)r2(r) denotes the L? inner product on I'. The existence of such a family
in the submerged case has been shown, Angell and Kleinman [1], while for the floating body
case such a family is available in the form of Ursell’s multiple potentials [8] whose completeness

properties were established by Martin [5].

With the availability of such a family a sequence of penalized finite dimensional optimization
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problems may be defined as follows: Find c( ) and T' to minimize

N
LM, 1 —Re/Z Ny P)drp+u/ > e 24P _gip) ar,.

on

In order to solve this nonlinear optimization problem the set of admissible surfaces I' must be

carefully defined and it will prove convenient to transform the integrals to integrate over a reference

surface introducing the unknown I' in the Jacobian of the transformation.

A precise characterization of the admissible surfaces and the way in which solutions of the fi-

nite dimensional optimization problems converge to solutions of the original optimization problem

will be presented.
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DISCUSSION

Pesce: I would like to add three comments on your interesting lecture. First, regarding
the ‘cost functional’ to be chosen, it seems to me that exciting forces or even first-order
motions should also be considered in a general problem.

Second, regarding irregular frequencies, I should mention that the problem can be
formulated in a weak sense; it can be proved that there are no irregular frequencies with
this formulation.

Finally, regarding the choice of trial functions, can the requirement of completeness be
somewhat relaxed, provided the functions are chosen to imitate properly the hydrodynamic
problem? Examples are the elementary trial functions (poles, dipoles, lines of dipoles and,
particularly, vortex rings) mentioned in my lecture [Pesce & Aranha, these Proceedings].
Could not completeness be sacrificed in order to achieve more rapid convergence?

Kleinman: Certainly, other cost functionals could be considered. Added mass was merely
an example. Using the weak formulation rather than the integral equation is an interesting
idea. One would have to investigate whether this would simplify the proof of continuity
of the functional with respect to the surface. As far as other choices of the expansion
functions, I agree that there are many possibilities. However, I do not think that it is
necessary to sacrifice completeness. Terms of the sort you suggest could be included in
the family but completeness is necessary in order to prove convergence of solutions of the
finite-dimensional optimization problem. In practice, of course, only a finite number of
members of the family will ever be employed.

Martin: You are working at one fixed value of K. Can you say anything about your
optimal surface I'y as a function of K7

Kleinman: What I spoke about was indeed a cost functional for one fixed value of K.
However, nothing would change (except the complication of the finite-dimensional opti-
mization problem) by taking the cost functional to be a sum of terms of the type discussed
for different values of K. Alternatively, the cost functional could be taken to be an in-
tegral over K, but in that case continuity with respect to the surface would have to be
reexamined.




