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Consider the classical problem of water waves on a uniformly sloping beach of angle a. A
coordinate system is chosen such that z, y and z are the offshore, vertical and longshore coordinates,
respectively. According to linear theory (see Whitham (1979) for details), this problem admits two
distinct types of wave solutions: first, a discrete spectrum consisting of a finite number of edge-wave
(trapped) modes which propagate along the shore and decay seawards,

& = F™)(z,y) cos(kz — wt)

with w? = ksin(2n + 1)aq,

F®™(z,y) ~ exp [k(ysin(2n + 1)a — zcos(2n + 1)a)] (z — oo),

where @ is the velocity potential; the nth edge-wave mode is possible if @ < 7/2(2n +1). Secondly,
there is a continuous spectrum representing waves obliquely incident and reflected on the beach:

® = fi(z,y) cos(kz —wt) (I >0)
with W=+ 1=, fi(z,y) ~e"tN 4cc. (2 - o0).

In the present paper, we study finite-amplitude effects on edge-wave modes using perturbation
expansions, similar to the Stokes expansion for periodic waves on water of uniform depth. Thus,
for the nth mode, we write

b = {F(")(x, y)ew +c.c}+ e{S(")(w,y)e"’w +cc+---,

where § = kz—wt, and € < 1 is a measure of nonlinearity. Substituting the above expansion into the
water-wave equations, it is found that the second harmonic S satisfies a forced boundary-value

problem of the form:
S& 4+ S —4k25™ =0 (—ztana <y <0),

n 2 — pln —
S~ 40280 = RW(z)  (y=0),
S sina + S;’f) cosa=0 (y=-—-ztana),
where R(™)(z) is a known forcing term owing to the nonlinear self-interaction of the first harmonic.
A formal solution of this problem is obtained as an eigenfunction expansion in terms of the discrete
and the continuous spectrum:

S =S oW F™ + [T,
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o =m/0 R™(z)F™)(2,0) da,
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with An = 2ksin(2n + 1)a.
It is important to note that C; has a pole on the real I-axis when

16k%sin?(2n + 1)a = 4k% + 12

for I real, and for the nth mode this is possible in the angle range
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Therefore, in this range of beach slopes, the second harmonic S(™e?? is expected to have an os-
cillatory behaviour at infinity (z — oo), implying that nonlinear effects cause some energy to be
radiated to deep water and the wave cannot remain trapped. In fact, a similar argument indicates
that, for the nth mode, the rth harmonic will not be trapped if

sin™'(1) ™

2n+1 <a<2(2n+1)' (1)
So, the Stokes expansion suggests that all edge-wave modes will leak some energy to deep water
however small the slope angle a; of course, as @ — 0, this effect shows up at a higher order in the
expansion and, therefore, it is weaker. We note that the fundamental mode (n = 0, the Stokes edge
wave) turns out to be exceptional; the forcing term R(z) happens to vanish for both the second and
third harmonic (r = 2, 3), as shown previously by Whitham (1976), but radiation is still expected
to occur for the fourth harmonic (r = 4) if sin™(1) < a < 7/2. We have studied the second edge
mode (n = 1) in detail for @ = /8, and have demonstrated that radiation indeed takes place at
second order (r = 2), in accordance with (1). Also, it is noteworthy that shallow-water theory fails
to predict this leaking of energy; this is understandable since shallow-water theory is not valid far
from the beach, however small the beach slope a.

The results presented above apply to edge waves on a uniformly sloping beach only. It would be

of interest to know if similar restrictions apply to edge waves in the presence of more general depth
variations. This problem is under current investigation.
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DISCUSSION

Palm: The free waves at large values of = are harmonic functions of z and z. It is possible
for the energy to be propagated in various directions. Which direction is preferred? If
the wave direction is oblique, what is the energy source for the energy transport along the
shore?

Akylas: Energy propagates along the shore owing to the edge waves and also away from
the shore owing to the radiated oblique wave. The direction of radiation can be found
explicitly, and, for a uniformly sloping beach, happens to be independent of the edge
wavenumber. After a long time, the edge wave amplitude will decay and therefore the
energy transport diminishes as well.

Peregrine: Have you considered standing edge waves?

Akylas: The radiation damping of standing edge waves has been investigated in earlier
work by Guza & Bowen [1], Minzoni & Whitham [2], and others. In this case, radiation
damping is possible for all beach slopes and can be studied using the shallow-water equa-
tions. For progressive edge waves, however, radiation damping is possible only for certain
ranges of beach slopes, and cannot be studied using shallow-water theory.
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