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In the linear theory describing ship advancing in waves (Ogilvie & Tuck(1969),
Newman(1978)) and in the wave-current-body interaction problem (Zhao & Faltin-
sen(1988)), the body boundary condition for the unsteady potential due to the forced
motions (in surge,sway,heave,roll,pitch and yaw) is given by

0¢;/0n =iwn;+Um; j=1,2,...60n Sp (1)

Here S is the mean oscillating position of the wetted body surface, n; and m; are
defined as

[nl,nz,n:;] = n (2)
[ny,ns,m6] = & x7 (3)
[(my,my,ms] = —(7-V)Ve, (4)
[my,ms,ms] = —(A- V)T x V¢,) (5)

where 77 is the normal vector of the body surface, & is the position vector, ¢, is the
steady potential due to ship forward motion or current past the body.

The m;-terms will often lead to difficulties in solving the boundary value problem.
We will here discuss these difficulties.

Boundary-integral methods are often used to solve the boundary value problem
described above. The boundary is then divided into panels. One possibility is to use
plane panels with constant singularity density over each panel. Another possibility
is to vary the singularity density over the curved panel. The first approximation is
called a low order panel method, and the second one a high order panel method.
The low order method is mostly used. In the following text we will give some simple
examples to study the detail of the behaviour of the first and second order derivatives
of the velocity potential at the body boundary by using the low order method. These
are needed in the calculation of the m -terms.
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By using Green’s second identity, the potential in the flow can be represented by
an integral around a closed boundary for two- or three-dimensional case

I, = / /5 (logrdg,/0n — ¢,dlogr/dn)ds for 2-D (6)
—dng, = / [) (r188,/0n — $,0(1/r)/On)ds for 3-D (7)

If we know the potential ¢, and it’s normal
derivative 8¢,/8n around a closed boundary,
we can obtain the potential at any point in the
flow by eq.(6) and eq.(7). We will choose a
simple case with uniform current past a two-
dimensional circular cylinder with radius 1 in
an infinite fluid domain.(see fig.1)

The potential due to the body is coséd/r and the normal derivative 8¢,/0n is -
cosf/r? at the body boundary. We can then divide the boundary into line elements
and for each element assume ¢, and 8¢,/On are constant with values which are
equal to the correct values at the mid-point of the element. The potential and its
derivatives outside the body boundary can be obtained by eq.(6) and derivatives of
eq.(6). Fig.2 shows the results of @, , 8¢,/0n, r~10¢,/86, 8°¢,/On? as a function
of the distance along the normal vector to the body boundary at the mid-point of
the element. The results are for § = 45° (see fig.1). The effect of different number
of elements NB is investigated. The solid line is the analytical solution, the triangle
is the numerical results of ¢, , the square sign corresponds to d¢,/dr,the cross sign
corresponds to r~'!9¢,/06 and the plus sign is the second derivative °¢,/0r%. The
horizontal axis is the ratio between the distance Al from the boundary and the length
As of the elements. The results show that we get convergence and correct results of
¢, and 8¢,/0r at the boundary. However, for r~19¢,/80 and 8°¢,/Or* we cannot
obtain correct results at the boundary. The reason is that we are not integrating with
correct curvature and with correct variation of ¢, and 0¢,/0r over the elements. If
we integrate with correct variation of ¢, and 9¢,/0r and along the exact boundary
of the closest elements , we can obtain correct results. For practical problems this
is difficult to do. From fig.2 we can see that r~'9¢,/86 , 8*¢,/0r? are satisfactorily
estimated at a distance of O(As) along the normal vector of the element. That means
we may use an extrapolation method to calculate the velocity along the body and the
second order derivatives. After some tests with a circular cylinder , a sphere and an
ellipsoid we found that the velocity along the body , the second order derivatives and
the m;-terms are in good agreement with the analytical solutions. The other way
to integrate the term m;logr(orl/r) over the body boundary is to apply the formula
given by Ogilvie and Tuck(1969).

//Sa mlogr(orl/r)ds = —//s V,Viogr(orl/r)n,ds (8)
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This formula is valid for a body without sharp corners , wall-sided at the free
surface and when @, satisfies the rigid free surface condition. From numerical point
of view this formula is more simple to calculate because it only includes first order

derivatives of the steady potential. It is expected to give more accurate numerical
results than by direct integration of the m-terms.

An alternative way to solve the ¢; problem will be outlined in the following text.
In this procedure the numerical difficulties with the m -terms are taken care of.

We divide the velocity potential ¢; into two parts

¢ =¢1+¢ (9)
where ¢¢ and ¢§ satisfy the following body boundary conditions.
| 847 /0n = Um; (10)
and
8¢5 /0n = iwn; (11)

The following solutions of ¢ satisfy the body boundary conditions and Laplace
equation.

$7 = —0¢,/0z (12)
03 = —0¢,/0y (13)
¢85 = —0¢,/0z (14)
87 = ~y89,/0z + 20¢,/0y (15)
s = z0¢,/0z — 20¢,/0x (16)
o5 = —28¢,/0y + yd¢,/ 0z (17)

By using Green’s second identity we obtain the following expressions for ¢¢ and

o,

argt = [ / [—r18¢%/8n + ¢°8(1/r)/Onlds (18)
! J$=Sp+SE+Sixr !
- -l . . 9
amg = [ [ [=r00;(0n+ 8,0(1/r)/Onlds (19)

The integration surfaces are closed (see fig.3). Sf is part of the free surfac? and
does not need to coincide with Sr. By subtracting these two equation we obtain

an(g; - ¢3) = [ [ (=108, - ¢)/0n + (85~ 7)0(1/)/Onds

+ //s .o [—r~'0¢,/0n + $;0(1/r)/Onlds
[ [ . (=063 /6n+ 8;6(1/r)/Bnlds (20)
JJSE+SInE
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The last integral is known quantity. The unknowns are ¢; — @9 on the body and ¢,
on §r,5/xr and so. By writing the integral over Sp like it is shown in last equation
the integrand of the integral over Sp is integrable. This procedure is also valid when
ship motions at forward speed is evaluated. More detail about solving this problem
and discussions are given by Zhao & Faltinsen (1989).
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DISCUSSION

Newman: The corner-flow sigularity discussed here also comes up in
the second-order (zero-speed) solution for an oscillating body.

Zhao & Faltinsen: The same procedure can also be used to solve the
second order potential problem (U=0). The body condition for the

second order potential is given by 0¢,/dn = - 9(F(@;))/dn, where
F(@,) satisfies Laplace equation and includes the first order
derivatives of @,. (@, - first order potential, ¢, - second order

potential) . We can then assume Q,=Q,a+Q,b where ¢,2 is equal -F (@)
which satisfies the body boundary condition.

Kleinman: Do the singularities in my result from differentiation

of lower order singularities in the potential (e.g. egqn (4) in
abstract), and if so, have you tried separating out the singular
behaviour by adding a singular element (instead of piecewise con-
stants near the singularity) which has proven useful in other
problems using boundary elements to solve integral equations with
singular solutions?

Zhao & Faltinsen: For the body with sharp corners it is not pos-
sible to apply this method since the singularity is not integrable
in the integral equation. If one introduces a bilge radius R and

let R—0, it may be possible to apply the method.

Tuck: Is it possible that the bounded integral on the right of eqg.
(8) is correct, but that (for sharp corners) the integral on the
left of eqg. (8) is not the correct one?

zhao & Faltinsen: If we introduce a bilge radius R and let R—O0,

the integrals both on the left and on the right of eg. (8) will be
correct.
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